R/cadra_functions.R

Defines functions generate_permutations ks_test_double_wrap check_top_N check_data_input prefilter_data verbose

Documented in generate_permutations prefilter_data

# Function to whether print diagnostic messages or not
verbose <- function(...){

  # Fetch verbose option set in candidate_search() function
  opt <- getOption("verbose", FALSE)
  if(!opt) return(invisible(NULL))
  msgs <- list(...)
  message(msgs,"\n")

}

#' Pre-filter features
#'
#' Pre-filter a dataset prior running \code{candidate_search} to avoid
#' testing features that are too prevalent or too sparse across samples in
#' the dataset
#' @param FS a matrix of binary features or a SummarizedExperiment class object 
#' from SummarizedExperiment package where rows represent features of interest 
#' (e.g. genes, transcripts, exons, etc...) and columns represent the samples. 
#' The assay of FS contains binary (1/0) values indicating the presence/absence 
#' of ‘omics’ features.
#' @param max_cutoff a numeric value between 0 and 1 describing the absolute
#' prevalence of a feature across all samples in the FS object which the
#' feature will be filtered out. Default is 0.6 (feature that occur in
#' 60 percent or more of the samples will be removed)
#' @param min_cutoff a numeric value between 0 and 1 describing the absolute
#' prevalence of a feature across all samples in the FS object which the
#' feature will be filtered out. Default is 0.03 (feature that occur in
#' 3 percent or less of the samples will be removed)
#' @param verbose a logical value indicates whether or not to print the
#' diagnostic messages. Default is \code{FALSE}.
#' 
#' @return A SummarizedExperiment object with only the filtered-in features
#' given the filtered thresholds
#' 
#' @examples
#'
#' # Load pre-computed feature set
#' data(sim_FS)
#'
#' # Filter out features having < 3% and > 60% prevalence across all samples
#' # by (default)
#' sim_FS_filt1 <- prefilter_data(FS = sim_FS)
#'
#' # Change the min cut-off to 1% prevalence, instead of the default of 3%
#' sim_FS_filt2 <- prefilter_data(FS = sim_FS, min_cutoff  = 0.01)
#'
#' # Change the max cut-off to 65% prevalence, instead of the default of 60%
#' sim_FS_filt3 <- prefilter_data(FS = sim_FS, max_cutoff = 0.65)
#'
#' @export
#' @import SummarizedExperiment
prefilter_data <- function(
    FS,
    max_cutoff = 0.6,
    min_cutoff = 0.03,
    verbose = FALSE
){

  # Set up verbose option
  options(verbose = verbose)
  
  # Check if FS is a matrix or a SummarizedExperiment class object
  if(!is(FS, "SummarizedExperiment") && !is(FS, "matrix"))
    stop("'FS' must be a matrix or a SummarizedExperiment class object
         from SummarizedExperiment package")
  
  # Retrieve the binary feature matrix
  if(is(FS, "SummarizedExperiment")){
    FS_mat <- SummarizedExperiment::assay(FS)
  }else{
    FS_mat <- FS
  }
  
  # Check if FS must contain at least one row feature with binary values 0s or 1s
  if(nrow(FS_mat) == 0 || any(!FS_mat %in% c(0,1)))
    stop("FS object must contain at least one row feature with 
         binary values 0s or 1s.")
  
  # Compute the frequency of feature occurrence across all samples
  # (i.e. fraction of samples having the feature)
  frac <- round(rowSums(FS_mat)/ncol(FS_mat), 2)
  
  verbose("Pre-filtering features...\n")
  verbose("Removing features having < ", min_cutoff*100, "% and > ",
          max_cutoff*100, "% occurence in sample set\n")
  
  FS_mat <- FS_mat[(frac >= min_cutoff) & (frac <= max_cutoff), , drop=FALSE]
  
  if(nrow(FS_mat) > 0){
    verbose(nrow(FS_mat), " features retained out of ", length(frac),
            " supplied features in the FS object\n")
    # If the class of FS is originally a SummarizedExperiment object
    # Convert the matrix to SummarizedExperiment
    # This makes sure the original class of FS object does not change 
    if(is(FS, "SummarizedExperiment")){
      FS_mat <- SummarizedExperiment::SummarizedExperiment(assays=FS_mat)
    }  
    return(FS_mat)
  }else{
    stop("Zero feature retained out of ", length(frac), 
         " supplied features in the FS object.")
  }
  
}


#' Checks if feature set and input scores are valid dataset
#'
#' @param FS_mat a matrix of binary features where rows represent features of 
#' interest (e.g. genes, transcripts, exons, etc...) and columns represent 
#' the samples. 
#' @param input_score a vector of continuous scores of a molecular phenotype of
#' interest such as protein expression, pathway activity, etc.
#' NOTE: The \code{input_score} object must have names or labels that 
#' match the column names of FS_mat object.
#' @param meta_feature a vector of one or more features representing known causes
#' of activation or features associated with a response of interest.
#' Default is NULL.
#' @param do_check a logical value indicates whether or not to validate if the  
#' given parameters (FS_mat and input_score) are valid inputs. 
#' Default is \code{TRUE}
#'
#' @noRd
#' 
#' @examples 
#' 
#' # Create a feature matrix
#' FS_mat <- matrix(c(1,0,1,0,0,0,0,0,1,0, 
#'                 0,0,1,0,1,0,1,0,0,0,
#'                 0,0,0,0,1,0,1,0,1,0), nrow=3)
#' 
#' colnames(FS_mat) <- 1:10
#' row.names(FS_mat) <- c("TP_1", "TP_2", "TP_3")
#' 
#' # Create a vector of observed input scores
#' set.seed(42)
#' input_score = rnorm(n = ncol(FS_mat))
#' names(input_score) <- colnames(FS_mat)
#'
#' # Check data inputs
#' check_data_input(
#'  FS_mat = FS_mat,
#'  input_score = input_score,
#'  meta_feature = NULL
#' )
#' 
#' @return If do_check=FALSE, return NULL, otherwise, check if FS_mat and 
#' input_score are valid inputs 
check_data_input <- function(
    FS_mat,
    input_score,
    meta_feature = NULL,
    do_check = TRUE
){
  
  if(do_check == FALSE) return(NULL)

  # Check if FS must contain at least one row feature with binary values 0s or 1s
  if(nrow(FS_mat) == 0 || any(!FS_mat %in% c(0,1)))
    stop("FS object must contain at least one row feature with 
         binary values 0s or 1s.")
  
  # Make sure the FS object has row names for features tracking
  if(is.null(rownames(FS_mat)))
    stop("The FS object does not have row names to ",
         "track features by. Please provide unique features or row names ",
         "for the FS object.\n")
  
  # Make sure the FS object has row names for features tracking
  if(is.null(colnames(FS_mat)))
    stop("The FS object does not have column names to ",
         "track samples by. Please provide unique sample names ",
         "for the FS object.\n")
  
  # Check if input_score is provided and contains a vector of continuous values 
  # (with no NAs). Additionally, check if it has names or labels that match 
  # the column names of the FS object
  if(length(input_score) == 0 || any(!is.numeric(input_score)) || 
     any(is.na(input_score)) || is.null(names(input_score)) ||
     any(!names(input_score) %in% colnames(FS_mat)))
    stop("input_score must contain a vector of continuous scores ",
         "(with no NAs), and its vector names or labels must match the column ",
         "names of the FS object.\n")
  
  # Check if the features have either all 0s or 1s values
  if(any(rowSums(FS_mat) %in% c(0, ncol(FS_mat))))
    stop("The FS object has features that are either all 0s or 1s. ",
         "These features must be removed from the FS object as ",
         "they are uninformative.")
  
  if(length(meta_feature) > 0 && any(!meta_feature %in% rownames(FS_mat)))
    stop("The provided meta feature(s): ", 
         paste0(meta_feature[which(!meta_feature %in% rownames(FS_mat))], 
                collapse=", "),
         " do(es) not exist among the row names of the FS object.\n")
  
}


#' Check top_N value for candidate_search()
#'
#' Checks top_N value is valid and return a list of indices of top N features 
#' with the best scores to start candidate_search()
#'
#' @param rowscore a vector of directional scores computed based on a
#' given scoring method, feature set (FS), and input score (input_score) using
#' calc_rowscore() function. The scores are ordered from most significant 
#' to least significant.
#' @param feature_names a list of feature names (or row names) in FS object
#' @param top_N an integer specifies the number of features to start the
#' search over (e.g. starting from the top 'N' features with the best scores). 
#' Default is 1.
#' If \code{top_N} is provided, then \code{search_start} parameter 
#' will be ignored. 
#' @param search_start a list of character strings (separated by commas)
#' which specify a list of feature names to start the search with. 
#' If \code{search_start} is provided, then \code{top_N} parameter 
#' will be ignored. Default is \code{NULL}.
#' 
#' @noRd
#' 
#' @examples 
#' 
#' # Load library
#' library(SummarizedExperiment)
#' 
#' # Load pre-computed feature set
#' data(sim_FS)
#'
#' # Load pre-computed input-score
#' data(sim_Scores)
#'
#' rowscore <- calc_rowscore(
#'  FS_mat = SummarizedExperiment::assay(sim_FS),
#'  input_score = sim_Scores,
#'  method = "ks_pval",
#'  alternative = "less",
#'  weights = NULL
#' )
#' 
#' top_N_index <- check_top_N(
#'  rowscore = rowscore,
#'  top_N = 7,
#'  search_start = NULL,
#'  feature_names = rownames(sim_FS)
#' )
#'
#' @return If top_N is given, a vector of indices of top N features with 
#' their corresponding best scores will be returned. These features will later 
#' use to start the candidate_search() with. Otherwise, the candidate_search() 
#' will start the heuristic search with a list of indices of starting features 
#' defined in search_start.
check_top_N <- function(
    rowscore, 
    feature_names,
    top_N = 1, 
    search_start = NULL
){
  
  # Check if search_start is given
  if(is.null(search_start)){
    
    if(is.na(top_N) || length(top_N) == 0 || top_N <= 0)
      stop("Please specify a NUMERIC top_N value to evaluate over top N ",
           "features (top_N must be >= 1).\n")
    
    if(top_N > length(feature_names))
      stop("Please specify a top_N value that is less than the number of ",
           "features in the FS object.\n")
    
    # Getting the top N features with the biggest scores
    top_features <- names(rowscore[seq_len(top_N)])
    
    # Retrieve the indexes of features with the best scores in FS object
    search_feature_index <- lapply(seq_along(top_features), function(f){
      #f=1;
      which(feature_names == top_features[f])
    }) |> unlist()
    
    verbose("Evaluating search over top ", length(search_feature_index), 
            " feature(s)\n")
    
  }else{
    
    search_start <- strsplit(as.character(search_start), ",", fixed=TRUE) |>
      unlist() |>
      trimws()
    
    if(length(search_start) == 0 || any(!search_start %in% feature_names))
      stop("The provided starting feature(s): ", 
           paste0(search_start[which(!search_start %in% feature_names)], 
                  collapse=", "),
           " do(es) not exist among the row names of the FS object.\n")
    
    # Get the index of the search_start strings
    search_feature_index <- lapply(seq_along(search_start), function(f){
      #f=1;
      which(feature_names == search_start[f])
    }) |> unlist()
    
    # User-specified feature names
    verbose("Starting with specified feature names...\n")
    
  }
  
  return(search_feature_index)
  
}



#' ks_test_d_wrap_ wrapper
#'
#' Compute directional Kolmogorov-Smirnov scores
#' @param n_x length of ranked list
#' @param y positions of geneset items in ranked list (ranks)
#' @param alt alternative hypothesis for p-value calculation
#' (\code{"two.sided"} or \code{"greater"} or \code{"less"}).
#' Default is \code{less} for left-skewed significance testing.
#' 
#' @noRd
#' @useDynLib CaDrA ks_test_d_wrap_
#'
#' @return need a return value here
ks_test_double_wrap <- function(n_x, y, alt=c("less", "greater", "two.sided")) {


  if(length(alt) > 0){
    alt_int<- switch(alt, two.sided=0L, less=1L, greater=-1L, 1L)
  } else {
    alt_int <- 1L
  }

  # If input is an empty vector
  if( n_x != length(y) | length(y) < 1) return (NULL)

  res <- .Call(ks_test_d_wrap_,  as.integer(n_x), as.numeric(y), alt_int)
  res

}


#' Random permutation matrix generator
#'
#' Produces a random permutation score matrix given a vector of sample-specific
#' scores representing a phenotypic readout of interest such as protein 
#' expression, pathway activity, etc.
#' @param input_score a vector of continuous scores of a molecular phenotype of 
#' interest such as protein expression, pathway activity, etc.
#' NOTE: The \code{input_score} object must have names or labels to track 
#' samples by.
#' @param n_perm a number of permutations to generate. This determines
#' the number of rows in the permutation matrix.
#' 
#' @return a matrix of values where each row contains scores of a single 
#' permuted \code{input_score}.
#'
#' @examples
#'
#' # Load pre-simulated scores
#' data(sim_Scores)
#'
#' # Set seed for permutation
#' set.seed(123)
#'
#' # Define number of permutations
#' n_perm = 1000
#'
#' # Generate permuted scores
#' perm_matrix <- generate_permutations(
#'   input_score = sim_Scores,
#'   n_perm = n_perm
#' )
#'
#' @export
generate_permutations <- function(
    input_score,
    n_perm
){
  
  # Check input_score is provided and is a continuous values with no NAs
  stopifnot("input_score must contain a vector of continuous values (no NAs)"= 
              length(input_score) > 0 && all(is.numeric(input_score)) && 
              all(!is.na(input_score)))
  
  # Make sure the input_score has names or labels to track samples by
  stopifnot("input_score object must have names or labels to track samples by"=
              !is.null(names(input_score)))
  
  # Get number of samples
  n <- length(input_score)
  
  # Create permutation matrix
  perm <- matrix(NA, nrow=n_perm, ncol=n)
  colnames(perm) <- names(input_score)

  # Sample the input scores
  for(i in seq_len(n_perm)){
    perm[i,] <- sample(input_score, n, replace=FALSE)
  }

  # Make sure permutations are unique
  stopifnot("Permutations are not unique. Try a different n_perm value." =
              (nrow(perm) == nrow(unique.matrix(perm))))
  
  return(perm)

}
montilab/CaDrA documentation built on Aug. 22, 2024, 11:55 p.m.