K2tax | R Documentation |
This function performs K2 Taxonomer procedure only. Arguments values are extracted from K2meta(K2res) unless othewise specified.
K2tax(
K2res,
nFeats = NULL,
featMetric = NULL,
recalcDataMatrix = NULL,
nBoots = NULL,
clustFunc = NULL,
clustCors = NULL,
clustList = NULL,
linkage = NULL,
oneoff = NULL,
stabThresh = NULL
)
K2res |
An object of class K2. The output of K2preproc(). |
nFeats |
A numeric value <= P of subsets of the data to use. |
featMetric |
Metric to use to assign variance/signal score. Options are 'square' (default), 'mad' to use MAD scores, 'sd' to use standard deviation |
recalcDataMatrix |
Recalculate dataMatrix for each partion? |
nBoots |
A numeric value of the number of bootstraps to run at each split. |
clustFunc |
Wrapper function to cluster a P x N (See details). |
clustCors |
Number of cores to use for clustering. |
clustList |
List of objects to use for clustering procedure. |
linkage |
Linkage criteria for splitting cosine matrix ('method' in hclust). |
oneoff |
Logical. Allow 1 member clusters? |
stabThresh |
A numeric value < 1, to set stopping threshold (use any negative value for no threshold). |
An object of class K2.
reed_2020K2Taxonomer
## Read in ExpressionSet object
library(Biobase)
data(sample.ExpressionSet)
## Pre-process and create K2 object
K2res <- K2preproc(sample.ExpressionSet)
## Run K2 Taxonomer algorithm
K2res <- K2tax(K2res,
stabThresh=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.