View source: R/getEnrichmentTable.R
getEnrichmentTable | R Documentation |
Create table hyper- and single-sample enrichment results from 'K2' object.
getEnrichmentTable(K2res)
K2res |
An object of class K2 or K2results(). |
A data.frame object with the following columns:
category: The user-specified gene set names
node: The identifier of the partition
edge: Indication of which subgroup the gene was assigned at a given partition
direction: The direction of coefficient for the assigned gene set
pval_hyper: The p-value of the hyperenrichment test comparing the subgroup-assigned gene set to the user-specified gene set
fdr_hyper: The multiple hypothesis corrected FDR (Benjamini-Hochberg) p-value of hyperenrichment, adjusted across all partitions
nhits: The intersection of subgroup-assigned genes and the user-specified gene set
ndrawn: The number of subgroup-assigned genes
ncats: The number of genes in the user-specified gene set
ntot: The background population of possible genes
pval_limma: The p-value estimated by the 'limma' R package
fdr_limma: The multiple hypothesis corrected FDR (Benjamini-Hochberg) p-value of differential analysis, adjusted across all partitions
coef: The difference between the means of each subgroup at a given partition
mean: The mean across all observations at the given partition
t: The test statistic estimated by the 'limma' R package
B: The B-statistic estimated by the 'limma' R package
reed_2020K2Taxonomer \insertReflimmaK2Taxonomer \insertRefbhK2Taxonomer \insertRefgsvaK2Taxonomer
## Read in ExpressionSet object
library(Biobase)
data(sample.ExpressionSet)
## Pre-process and create K2 object
K2res <- K2preproc(sample.ExpressionSet)
## Run K2 Taxonomer algorithm
K2res <- K2tax(K2res,
stabThresh=0.5)
## Run differential analysis on each partition
K2res <- runDGEmods(K2res)
## Create dummy set of gene sets
DGEtable <- getDGETable(K2res)
genes <- unique(DGEtable$gene)
genesetsMadeUp <- list(
GS1=genes[1:50],
GS2=genes[51:100],
GS3=genes[101:150])
## Run gene set hyperenrichment
K2res <- runGSEmods(K2res,
genesets=genesetsMadeUp,
qthresh=0.1)
## Run GSVA on genesets
K2res <- runGSVAmods(K2res,
ssGSEAalg='gsva',
ssGSEAcores=1,
verbose=FALSE)
## Run differential analysis on GSVA results
K2res <- runDSSEmods(K2res)
head(getEnrichmentTable(K2res))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.