# --------------------------------------------------- #
# Author: Marius D. Pascariu
# Last update: Thu Mar 25 14:21:22 2021
# --------------------------------------------------- #
remove(list = ls())
library(tidyverse)
library(MortalityCauses)
# ------------------------------------------
unique(data_gbd2019_cod$region)
D <- data_gbd2019_cod %>%
filter(region %in% c("France",
"Japan",
"United Republic of Tanzania",
"Mexico",
"Romania",
"South Africa")) %>%
group_by(region, cause_name) %>%
summarise(deaths = sum(deaths)) %>%
mutate(perc = deaths/ sum(deaths) * 100)
rank2 <- D %>%
select(-deaths) %>%
pivot_wider(
names_from = region,
values_from = perc) %>%
rename(Tanzania = `United Republic of Tanzania`) %>%
arrange(desc(France)) %>%
print(n = Inf)
openxlsx::write.xlsx(rank2, file = "data-raw/Rank_COD_2015-19_v3.xlsx")
# ------------------------------------------
# Let's have a look at the neoplasms and cardio data in more detail
gbd_5c <- read_csv(file = "data-raw/GBD2019COD/IHME-GBD_2019_DATA-Neoplasm+Cardio_5_Countries.zip")
gbd_5c %>%
select(cause_id, cause_name) %>%
unique() %>%
arrange(cause_id) %>%
print(n = Inf)
gbd_5C <- gbd_5c %>%
mutate(
cause_id2 = ifelse(cause_id < 491, "Cancer", "Cardio"),
location_name = ifelse(location_name == "United Republic of Tanzania", "Tanzania", location_name)
)
rank3 <- gbd_5C %>%
filter(cause_id2 == "Cancer",
cause_name != "Neoplasms") %>%
group_by(location_name, cause_name) %>%
summarise(deaths = sum(val)) %>%
mutate(perc = deaths/ sum(deaths) * 100) %>%
select(-deaths) %>%
pivot_wider(
names_from = location_name,
values_from = perc) %>%
arrange(desc(France)) %>%
print(n = Inf)
rank4 <- gbd_5C %>%
filter(cause_id2 == "Cardio",
cause_name != "Cardiovascular diseases") %>%
group_by(location_name, cause_name) %>%
summarise(deaths = sum(val)) %>%
mutate(perc = deaths/ sum(deaths) * 100) %>%
select(-deaths) %>%
pivot_wider(
names_from = location_name,
values_from = perc) %>%
arrange(desc(France)) %>%
print(n = Inf)
openxlsx::write.xlsx(rank3, file = "data-raw/Rank_Neo_2015-19.xlsx")
openxlsx::write.xlsx(rank4, file = "data-raw/Rank_Cardio_2015-19.xlsx")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.