Description Usage Arguments Details Value Double-precision values Note on names References See Also Examples
Dit werkt hetzelfde als is.double en as.double, maar toetst en transformeert respectievelijk door eerst komma's als punt te lezen. De functie is.double2 toetst door middel van reguliere expressies, dus wordt ook TRUE bij bijvoorbeeld "3306".
1 2 3 | is.double2(x, dec = c(".", ","), na.rm = TRUE)
as.double2(x)
|
x |
object to be coerced or tested. |
dec |
Standaard is |
na.rm |
Standaard is |
double creates a double-precision vector of the specified
length. The elements of the vector are all equal to 0.
It is identical to numeric.
as.double is a generic function. It is identical to
as.numeric. Methods should return an object of base type
"double".
is.double is a test of double type.
R has no single precision data type. All real numbers are
stored in double precision format. The functions as.single
and single are identical to as.double and double
except they set the attribute Csingle that is used in the
.C and .Fortran interface, and they are
intended only to be used in that context.
double creates a double-precision vector of the specified
length. The elements of the vector are all equal to 0.
as.double attempts to coerce its argument to be of double type:
like as.vector it strips attributes including names.
(To ensure that an object is of double type without stripping
attributes, use storage.mode.) Character strings
containing optional whitespace followed by either a decimal
representation or a hexadecimal representation (starting with
0x or 0X) can be converted, as can special values such
as "NA", "NaN", "Inf" and "infinity",
irrespective of case.
as.double for factors yields the codes underlying the factor
levels, not the numeric representation of the labels, see also
factor.
is.double returns TRUE or FALSE depending on
whether its argument is of double type or not.
All R platforms are required to work with values conforming to the
IEC 60559 (also known as IEEE 754) standard. This basically works
with a precision of 53 bits, and represents to that precision a range
of absolute values from about 2e-308 to
2e+308. It also has special values
NaN (many of them), plus and minus infinity and plus and
minus zero (although R acts as if these are the same). There are
also denormal(ized) (or subnormal) numbers with absolute
values above or below the range given above but represented to less
precision.
See .Machine for precise information on these limits.
Note that ultimately how double precision numbers are handled is down
to the CPU/FPU and compiler.
In IEEE 754-2008/IEC60559:2011 this is called ‘binary64’ format.
It is a historical anomaly that R has two names for its
floating-point vectors, double and numeric
(and formerly had real).
double is the name of the type.
numeric is the name of the mode and also of the implicit
class. As an S4 formal class, use "numeric".
The potential confusion is that R has used mode
"numeric" to mean ‘double or integer’, which conflicts
with the S4 usage. Thus is.numeric tests the mode, not the
class, but as.numeric (which is identical to as.double)
coerces to the class.
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
https://en.wikipedia.org/wiki/IEEE_754-1985, https://en.wikipedia.org/wiki/IEEE_754-2008, https://en.wikipedia.org/wiki/Double_precision, https://en.wikipedia.org/wiki/Denormal_number.
http://754r.ucbtest.org/ for links to information on the standards.
integer, numeric, storage.mode.
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.