Description Usage Arguments Value References Examples
This function calculates the ratio of standard deviations index as described in Reckase, Ju, and Kim (2019)
1 | SD.ratio(item.diff, theta.hat)
|
item.diff |
average item difficulties administered to a test taker during a computerized test administration |
theta.hat |
estimated ability level of a group of individuals who were measured using a CAT environment |
This function returns numeric value
Reckase, M. D., Ju, U., & Kim, S. (2019). How adaptive is an adaptive test: Are all adaptive tests adaptive?. Journal of Computerized Adaptive Testing, 7(1), 1-14.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | library(catR)
N=1000 #number of students
bank=250 #number of items
items=45
theta=rnorm(N,0,1) #level of trait
model="2PL" #IRT model to use
start <- list(theta = -1:1, randomesque = 1)
stop <- list(rule = c( "length"), thr = items)
final <- list(method = "ML")
test=list(method = "ML", itemSelect = "MFI")
bank=genDichoMatrix(items =bank, cbControl = NULL,
model = model)
res <- simulateRespondents(thetas = theta, bank,
start = start, test = test, stop = stop,
final = final, model = NULL)
theta.hat=res$final.values.df$estimated.theta
items.administered=res$responses.df[,grepl("items.administrated",
names( res$responses.df ) ) ]
colnames(items.administered)=NULL
item.diff=matrix(ncol = ncol(items.administered),nrow = nrow(items.administered))
for (k in 1:nrow(items.administered)) {
xx= as.numeric(items.administered[k,])
item.diff[k,]=bank[xx,2]
}
SDrat(item.diff,theta.hat)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.