bbmcppb.sub:

Usage Arguments Examples

Usage

1
bbmcppb.sub(J, K, x, est = tmean, JK = J * K, con = 0, alpha = 0.05, grp = c(1:JK), nboot = 500, bhop = FALSE, SEED = TRUE, ...)

Arguments

J
K
x
est
JK
con
alpha
grp
nboot
bhop
SEED
...

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function (J, K, x, est = tmean, JK = J * K, con = 0, alpha = 0.05, 
    grp = c(1:JK), nboot = 500, bhop = FALSE, SEED = TRUE, ...) 
{
    if (is.matrix(x)) {
        y <- list()
        for (j in 1:ncol(x)) y[[j]] <- x[, j]
        x = y
    }
    ncon = ncol(con)
    p <- J * K
    JK = p
    if (p > length(x)) 
        stop("JK is less than the Number of groups")
    JK = J * K
    data <- list()
    xx = list()
    for (j in 1:length(x)) {
        xx[[j]] = x[[grp[j]]]
    }
    for (j in 1:p) {
        xx[[j]] = elimna(xx[[j]])
    }
    x = xx
    if (SEED) 
        set.seed(2)
    testA = NA
    bsam = list()
    bdat = list()
    aboot = matrix(NA, nrow = nboot, ncol = ncol(con))
    tvec = NA
    tvec = linhat(x, con, est = est, ...)
    for (ib in 1:nboot) {
        for (j in 1:JK) {
            nv = length(x[[j]])
            bdat[[j]] = sample(nv, size = nv, replace = T)
            bsam[[j]] = x[[j]][bdat[[j]]]
        }
        aboot[ib, ] = linhat(bsam, con = con, est = est, ...)
    }
    pbA = NA
    for (j in 1:ncol(aboot)) {
        pbA[j] = mean(aboot[, j] > 0)
        pbA[j] = 2 * min(c(pbA[j], 1 - pbA[j]))
    }
    if (!bhop) {
        if (alpha == 0.05) {
            dvec <- c(0.05, 0.025, 0.0169, 0.0127, 0.0102, 0.00851, 
                0.0073, 0.00639, 0.00568, 0.00511)
            if (ncol(con) > 10) {
                avec <- 0.05/c(11:(ncol(con)))
                dvec <- c(dvec, avec)
            }
        }
        if (alpha == 0.01) {
            dvec <- c(0.01, 0.005, 0.00334, 0.00251, 0.00201, 
                0.00167, 0.00143, 0.00126, 0.00112, 0.00101)
            if (con > 10) {
                avec <- 0.01/c(11:ncol(con))
                dvec <- c(dvec, avec)
            }
        }
        if (alpha != 0.05 && alpha != 0.01) {
            dvec <- alpha/c(1:ncol(con))
        }
    }
    if (bhop) 
        dvec <- (ncol(con) - c(1:ncol(con)) + 1) * alpha/ncol(con)
    outputA <- matrix(0, ncol(con), 6)
    dimnames(outputA) <- list(NULL, c("con.num", "psihat", "p.value", 
        "p.crit", "ci.lower", "ci.upper"))
    test = pbA
    temp2 <- order(0 - test)
    zvec <- dvec[1:ncon]
    sigvec <- (test[temp2] >= zvec)
    outputA[temp2, 4] <- zvec
    icl <- round(dvec[ncon] * nboot/2) + 1
    icu <- nboot - icl - 1
    outputA[, 2] <- tvec
    for (ic in 1:ncol(con)) {
        outputA[ic, 1] <- ic
        outputA[ic, 3] <- test[ic]
        temp <- sort(aboot[, ic])
        outputA[ic, 5] <- temp[icl]
        outputA[ic, 6] <- temp[icu]
    }
    outputA
  }

musto101/wilcox_R documentation built on May 23, 2019, 10:52 a.m.