1 |
J |
|
K |
|
L |
|
x |
|
tr |
|
JKL |
|
con |
|
alpha |
|
grp |
|
nboot |
|
SEED |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (J, K, L, x, tr = 0.2, JKL = J * K * L, con = 0, alpha = 0.05,
grp = c(1:JKL), nboot = 599, SEED = TRUE, ...)
{
if (is.matrix(x)) {
y <- list()
for (j in 1:ncol(x)) y[[j]] <- x[, j]
x <- y
}
conM = con3way(J, K, L)
p <- J * K * L
if (p > length(x))
stop("JKL is less than the Number of groups")
JK = J * K
v <- matrix(0, p, p)
data <- list()
xx = list()
for (j in 1:length(x)) {
data[[j]] <- x[[grp[j]]]
xx[[j]] = x[[grp[j]]]
data[[j]] = data[[j]] - mean(data[[j]], tr = tr)
}
ilow = 0 - L
iup = 0
for (j in 1:JK) {
ilow <- ilow + L
iup = iup + L
sel <- c(ilow:iup)
xx[sel] = listm(elimna(matl(xx[sel])))
v[sel, sel] <- covmtrim(xx[sel], tr)
}
A = lindep(xx, conM$conA, cmat = v, tr = tr)$test.stat
B = lindep(xx, conM$conB, cmat = v, tr = tr)$test.stat
C = lindep(xx, conM$conC, cmat = v, tr = tr)$test.stat
AB = lindep(xx, conM$conAB, cmat = v, tr = tr)$test.stat
AC = lindep(xx, conM$conAC, cmat = v, tr = tr)$test.stat
BC = lindep(xx, conM$conBC, cmat = v, tr = tr)$test.stat
ABC = lindep(xx, conM$conABC, cmat = v, tr = tr)$test.stat
x <- data
jp <- 1 - K
kv <- 0
if (SEED)
set.seed(2)
testA = NA
testB = NA
testC = NA
testAB = NA
testAC = NA
testBC = NA
testABC = NA
bsam = list()
bdat = list()
aboot = matrix(NA, nrow = nboot, ncol = ncol(conM$conA))
bboot = matrix(NA, nrow = nboot, ncol = ncol(conM$conB))
cboot = matrix(NA, nrow = nboot, ncol = ncol(conM$conC))
abboot = matrix(NA, nrow = nboot, ncol = ncol(conM$conAB))
acboot = matrix(NA, nrow = nboot, ncol = ncol(conM$conAC))
bcboot = matrix(NA, nrow = nboot, ncol = ncol(conM$conBC))
abcboot = matrix(NA, nrow = nboot, ncol = ncol(conM$conABC))
for (ib in 1:nboot) {
ilow <- 1 - L
iup = 0
for (j in 1:JK) {
ilow <- ilow + L
iup = iup + L
nv = length(x[[ilow]])
bdat[[j]] = sample(nv, size = nv, replace = T)
for (k in ilow:iup) {
bsam[[k]] = x[[k]][bdat[[j]]]
}
}
ilow = 0 - L
iup = 0
for (j in 1:JK) {
ilow <- ilow + L
iup = iup + L
sel <- c(ilow:iup)
v[sel, sel] <- covmtrim(bsam[sel], tr)
}
temp = abs(lindep(bsam, conM$conA, cmat = v, tr = tr)$test.stat[,
4])
aboot[ib, ] = temp
testA[ib] = max(temp)
temp = abs(lindep(bsam, conM$conB, cmat = v, tr = tr)$test.stat[,
4])
bboot[ib, ] = temp
testB[ib] = max(temp)
temp = abs(lindep(bsam, conM$conC, cmat = v, tr = tr)$test.stat[,
4])
cboot[ib, ] = temp
testC[ib] = max(temp)
temp = abs(lindep(bsam, conM$conAC, cmat = v, tr = tr)$test.stat[,
4])
acboot[ib, ] = temp
testAC[ib] = max(temp)
temp = abs(lindep(bsam, conM$conBC, cmat = v, tr = tr)$test.stat[,
4])
bcboot[ib, ] = temp
testBC[ib] = max(temp)
temp = abs(lindep(bsam, conM$conAB, cmat = v, tr = tr)$test.stat[,
4])
testAB[ib] = max(temp)
abboot[ib, ] = temp
temp = abs(lindep(bsam, conM$conABC, cmat = v, tr = tr)$test.stat[,
4])
abcboot[ib, ] = temp
testABC[ib] = max(temp)
}
pbA = NA
pbB = NA
pbC = NA
pbAB = NA
pbAC = NA
pbBC = NA
pbABC = NA
for (j in 1:ncol(aboot)) pbA[j] = mean((abs(A[j, 4]) < aboot[,
j]))
for (j in 1:ncol(bboot)) pbB[j] = mean((abs(B[j, 4]) < bboot[,
j]))
for (j in 1:ncol(cboot)) pbC[j] = mean((abs(C[j, 4]) < cboot[,
j]))
for (j in 1:ncol(abboot)) pbAB[j] = mean((abs(AB[j, 4]) <
abboot[, j]))
for (j in 1:ncol(acboot)) pbAC[j] = mean((abs(AC[j, 4]) <
acboot[, j]))
for (j in 1:ncol(bcboot)) pbBC[j] = mean((abs(BC[j, 4]) <
bcboot[, j]))
for (j in 1:ncol(abcboot)) pbABC[j] = mean((abs(ABC[j, 4]) <
abcboot[, j]))
critA = sort(testA)
critB = sort(testB)
critC = sort(testC)
critAB = sort(testAB)
critAC = sort(testAC)
critBC = sort(testBC)
critABC = sort(testABC)
ic <- floor((1 - alpha) * nboot)
critA = critA[ic]
critB = critB[ic]
critC = critC[ic]
critAB = critAB[ic]
critAC = critAC[ic]
critBC = critBC[ic]
critABC = critABC[ic]
critA = matrix(critA, ncol = 1, nrow = nrow(A))
dimnames(critA) = list(NULL, c("crit.val"))
p.value = pbA
A = cbind(A, critA, p.value)
critB = matrix(critB, ncol = 1, nrow = nrow(B))
dimnames(critB) = list(NULL, c("crit.val"))
p.value = pbB
B = cbind(B, critB, p.value)
critC = matrix(critC, ncol = 1, nrow = nrow(C))
dimnames(critC) = list(NULL, c("crit.val"))
p.value = pbC
C = cbind(C, critC, p.value)
critAB = matrix(critAB, ncol = 1, nrow = nrow(AB))
dimnames(critAB) = list(NULL, c("crit.val"))
p.value = pbAB
AB = cbind(AB, critAB, p.value)
critAC = matrix(critAC, ncol = 1, nrow = nrow(AC))
dimnames(critAC) = list(NULL, c("crit.val"))
p.value = pbAC
AC = cbind(AC, critAC, p.value)
critBC = matrix(critBC, ncol = 1, nrow = nrow(BC))
dimnames(critBC) = list(NULL, c("crit.val"))
p.value = pbBC
BC = cbind(BC, critBC, p.value)
critABC = matrix(critABC, ncol = 1, nrow = nrow(ABC))
dimnames(critABC) = list(NULL, c("crit.val"))
p.value = pbABC
ABC = cbind(ABC, critABC, p.value)
list(Fac.A = A, Fac.B = B, Fac.C = C, Fac.AB = AB, Fac.AC = AC,
Fac.BC = BC, Fac.ABC = ABC)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.