1 |
x |
|
y |
|
regfun |
|
nboot |
|
alpha |
|
xout |
|
outfun |
|
MC |
|
SEED |
|
pr |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, y, regfun = tsreg, nboot = 400, alpha = 0.05, xout = FALSE,
outfun = out, MC = FALSE, SEED = TRUE, pr = TRUE, ...)
{
if (MC)
library(parallel)
x <- as.matrix(x)
p1 <- ncol(x) + 1
p <- ncol(x)
if (p != 2)
stop("Argument x should have two columns")
xy <- cbind(x, y)
xy <- elimna(xy)
x <- xy[, 1:p]
y <- xy[, p1]
if (xout) {
m <- cbind(x, y)
flag <- outfun(x, plotit = FALSE)$keep
m <- m[flag, ]
x <- m[, 1:p]
y <- m[, p1]
}
if (MC) {
temp1 = regciMC(x[, 1], x[, 2], regfun = regfun, nboot = nboot,
alpha = alpha, SEED = SEED, pr = FALSE)
temp2 = regciMC(x, y, regfun = regfun, nboot = nboot,
alpha = alpha, SEED = SEED, pr = FALSE)
}
if (!MC) {
temp1 = regci(x[, 1], x[, 2], regfun = regfun, nboot = nboot,
alpha = alpha, SEED = SEED, pr = FALSE)
temp2 = regci(x, y, regfun = regfun, nboot = nboot, alpha = alpha,
SEED = SEED, pr = FALSE)
}
if (pr) {
print("Output returned in res1 is for the slope of the regression line")
print("where the goal is to predict the mediator variable given the other")
print("predictor variable stored in column 1 of x.")
print("Output in res2 is for slope of the mediator when both predictors are used.")
}
res1 = c(temp1$regci[2, ], temp1$p.value[2])
z1 = t(as.matrix(res1))
dimnames(z1) = list(NULL, c("ci.low", "ci.up", "Estimate",
"S.E.", "p.value"))
res2 = c(temp2$regci[3, ], temp2$p.value[3])
z2 = t(as.matrix(res2))
dimnames(z2) = list(NULL, c("ci.low", "ci.up", "Estimate",
"S.E.", "p.value"))
list(res1 = z1, res2 = z2)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.