1 | rung3d(x, y, est = onestep, fr = 1, plotit = TRUE, theta = 50, phi = 25, pyhat = FALSE, LP = FALSE, expand = 0.5, scale = FALSE, zscale = TRUE, nmin = 0, xout = FALSE, eout = FALSE, outfun = out, SEED = TRUE, STAND = TRUE, xlab = "X", ylab = "Y", zlab = "", pr = TRUE, duplicate = "error", ticktype = "simple", ...)
|
x |
|
y |
|
est |
|
fr |
|
plotit |
|
theta |
|
phi |
|
pyhat |
|
LP |
|
expand |
|
scale |
|
zscale |
|
nmin |
|
xout |
|
eout |
|
outfun |
|
SEED |
|
STAND |
|
xlab |
|
ylab |
|
zlab |
|
pr |
|
duplicate |
|
ticktype |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, y, est = onestep, fr = 1, plotit = TRUE, theta = 50,
phi = 25, pyhat = FALSE, LP = FALSE, expand = 0.5, scale = FALSE,
zscale = TRUE, nmin = 0, xout = FALSE, eout = FALSE, outfun = out,
SEED = TRUE, STAND = TRUE, xlab = "X", ylab = "Y", zlab = "",
pr = TRUE, duplicate = "error", ticktype = "simple", ...)
{
library(MASS)
library(akima)
if (SEED)
set.seed(12)
if (eout && xout)
stop("Not allowed to have eout=xout=T")
if (!is.matrix(x))
stop("Data are not stored in a matrix.")
if (nrow(x) != length(y))
stop("Number of rows in x does not match length of y")
temp <- cbind(x, y)
p <- ncol(x)
p1 <- p + 1
temp <- elimna(temp)
if (eout) {
keepit <- outfun(temp, plotit = FALSE)$keep
x <- x[keepit, ]
y <- y[keepit]
}
if (xout) {
keepit <- outfun(x, plotit = FALSE, STAND = STAND, ...)$keep
x <- x[keepit, ]
y <- y[keepit]
}
if (zscale) {
for (j in 1:p1) {
temp[, j] <- (temp[, j] - median(temp[, j]))/mad(temp[,
j])
}
}
x <- temp[, 1:p]
y <- temp[, p1]
m <- cov.mve(x)
iout <- c(1:nrow(x))
rmd <- 1
nval <- 1
for (i in 1:nrow(x)) rmd[i] <- est(y[near3d(x, x[i, ], fr,
m)], ...)
for (i in 1:nrow(x)) nval[i] <- length(y[near3d(x, x[i, ],
fr, m)])
if (ncol(x) == 2) {
if (plotit) {
if (pr) {
if (!scale)
print("With dependence, suggest using scale=T")
}
fitr <- rmd[nval > nmin]
y <- y[nval > nmin]
x <- x[nval > nmin, ]
iout <- c(1:length(fitr))
nm1 <- length(fitr) - 1
for (i in 1:nm1) {
ip1 <- i + 1
for (k in ip1:length(fitr)) if (sum(x[i, ] ==
x[k, ]) == 2)
iout[k] <- 0
}
fitr <- fitr[iout >= 1]
if (LP)
fitr = lplot(x[iout >= 1, ], fitr, pyhat = TRUE,
pr = FALSE, plotit = FALSE)$yhat
mkeep <- x[iout >= 1, ]
fit <- interp(mkeep[, 1], mkeep[, 2], fitr, duplicate = duplicate)
persp(fit, theta = theta, phi = phi, expand = expand,
scale = scale, xlab = xlab, ylab = ylab, zlab = zlab,
ticktype = ticktype)
}
}
if (pyhat)
last <- rmd
if (!pyhat)
last <- "Done"
last
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.