1 |
x |
|
y |
|
theta |
|
phi |
|
fr |
|
tr |
|
plotit |
|
pyhat |
|
nmin |
|
expand |
|
scale |
|
zscale |
|
xout |
|
outfun |
|
eout |
|
xlab |
|
ylab |
|
zlab |
|
pr |
|
SEED |
|
ticktype |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, y, theta = 50, phi = 25, fr = 0.8, tr = 0.2, plotit = TRUE,
pyhat = FALSE, nmin = 0, expand = 0.5, scale = FALSE, zscale = FALSE,
xout = FALSE, outfun = out, eout = FALSE, xlab = "X", ylab = "Y",
zlab = "", pr = TRUE, SEED = TRUE, ticktype = "simple")
{
library(MASS)
library(akima)
if (plotit) {
if (pr) {
print("Note: when there is independence, scale=F is probably best")
print("When there is dependence, scale=T is probably best")
}
}
if (!is.matrix(x))
stop("x should be a matrix")
if (nrow(x) != length(y))
stop("number of rows of x should equal length of y")
temp <- cbind(x, y)
p <- ncol(x)
p1 <- p + 1
temp <- elimna(temp)
if (xout) {
keepit <- rep(T, nrow(x))
flag <- outfun(x, plotit = FALSE)$out.id
keepit[flag] <- F
x <- x[keepit, ]
y <- y[keepit]
}
if (zscale) {
for (j in 1:p1) {
temp[, j] <- (temp[, j] - median(temp[, j]))/mad(temp[,
j])
}
}
x <- temp[, 1:p]
y <- temp[, p1]
pyhat <- as.logical(pyhat)
plotit <- as.logical(plotit)
if (SEED)
set.seed(12)
m <- cov.mve(x)
iout <- c(1:nrow(x))
rmd <- 1
nval <- 1
for (i in 1:nrow(x)) rmd[i] <- mean(y[near3d(x, x[i, ], fr,
m)], tr)
for (i in 1:nrow(x)) nval[i] <- length(y[near3d(x, x[i, ],
fr, m)])
if (plotit) {
if (ncol(x) != 2)
stop("When plotting, x must be an n by 2 matrix")
fitr <- rmd[nval > nmin]
y <- y[nval > nmin]
x <- x[nval > nmin, ]
iout <- c(1:length(fitr))
nm1 <- length(fitr) - 1
for (i in 1:nm1) {
ip1 <- i + 1
for (k in ip1:length(fitr)) if (sum(x[i, ] == x[k,
]) == 2)
iout[k] <- 0
}
fitr <- fitr[iout >= 1]
mkeep <- x[iout >= 1, ]
fit <- interp(mkeep[, 1], mkeep[, 2], fitr)
persp(fit, theta = theta, phi = phi, xlab = xlab, ylab = ylab,
zlab = zlab, expand = expand, scale = scale, ticktype = ticktype)
}
last <- "Done"
if (pyhat)
last <- rmd
last
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.