## ##############################################################################
##
## LMM_Sigma_G: Returns VAR(Y) = Sigma and the G matrices
##
## Re-implemented in Banff, Canada, August 2013 by Søren Højsgaard
##
## ##############################################################################
#' @export
get_SigmaG <- function(object, details=0) {
UseMethod("get_SigmaG")
}
#' @export
get_SigmaG.lmerMod <- function(object, details=0) {
.get_SigmaG( object, details )
}
#' @export
get_SigmaG.mer <- function(object, details=0) {
LMM_Sigma_G( object, details )
}
.get_SigmaG <- function(object, details=0) {
DB <- details > 0 ## For debugging only
if (!.is.lmm(object))
stop("'object' is not Gaussian linear mixed model")
GGamma <- VarCorr(object)
SS <- .shgetME( object )
## Put covariance parameters for the random effects into a vector:
## Fixme: It is a bit ugly to throw everything into one long vector here; a list would be more elegant
ggamma <- NULL
for ( ii in 1:( SS$n.RT )) {
Lii <- GGamma[[ii]]
ggamma <- c(ggamma, Lii[ lower.tri( Lii, diag=TRUE ) ] )
}
ggamma <- c( ggamma, sigma( object )^2 ) ## Extend ggamma by the residuals variance
n.ggamma <- length(ggamma)
## Find G_r:
G <- NULL
Zt <- getME( object, "Zt" )
for (ss in 1:SS$n.RT) {
ZZ <- .shget_Zt_group( ss, Zt, SS$Gp )
n.lev <- SS$n.lev.by.RT2[ ss ] ## ; cat(sprintf("n.lev=%i\n", n.lev))
Ig <- sparseMatrix(1:n.lev, 1:n.lev, x=1)
for (rr in 1:SS$n.parm.by.RT[ ss ]) {
## This is takes care of the case where there is random regression and several matrices have to be constructed.
## FIXME: I am not sure this is correct if there is a random quadratic term. The '2' below looks suspicious.
ii.jj <- .index2UpperTriEntry( rr, SS$n.comp.by.RT[ ss ] ) ##; cat("ii.jj:"); print(ii.jj)
ii.jj <- unique(ii.jj)
if (length(ii.jj)==1){
EE <- sparseMatrix(ii.jj, ii.jj, x=1, dims=rep(SS$n.comp.by.RT[ ss ], 2))
} else {
EE <- sparseMatrix(ii.jj, ii.jj[2:1], dims=rep(SS$n.comp.by.RT[ ss ], 2))
}
EE <- Ig %x% EE ## Kronecker product
G <- c( G, list( t(ZZ) %*% EE %*% ZZ ) )
}
}
## Extend by the indentity for the residual
n.obs <- nrow(getME(object,'X'))
G <- c( G, list(sparseMatrix(1:n.obs, 1:n.obs, x=1 )) )
Sigma <- ggamma[1] * G[[1]]
for (ii in 2:n.ggamma) {
Sigma <- Sigma + ggamma[ii] * G[[ii]]
}
SigmaG <- list(Sigma=Sigma, G=G, n.ggamma=n.ggamma)
SigmaG
}
.shgetME <- function( object ){
Gp <- getME( object, "Gp" )
n.RT <- length( Gp ) - 1 ## Number of random terms ( i.e. of (|)'s )
n.lev.by.RT <- sapply(getME(object, "flist"), function(x) length(levels(x)))
n.comp.by.RT <- .get.RT.dim.by.RT( object )
n.parm.by.RT <- (n.comp.by.RT + 1) * n.comp.by.RT / 2
n.RE.by.RT <- diff( Gp )
n.lev.by.RT2 <- n.RE.by.RT / n.comp.by.RT ## Same as n.lev.by.RT2 ???
list(Gp = Gp, ## group.index
n.RT = n.RT, ## n.groupFac
n.lev.by.RT = n.lev.by.RT, ## nn.groupFacLevelsNew
n.comp.by.RT = n.comp.by.RT, ## nn.GGamma
n.parm.by.RT = n.parm.by.RT, ## mm.GGamma
n.RE.by.RT = n.RE.by.RT, ## ... Not returned before
n.lev.by.RT2 = n.lev.by.RT2, ## nn.groupFacLevels
n_rtrms = getME( object, "n_rtrms")
)
}
.getME.all <- function(obj) {
nmME <- eval(formals(getME)$name)
sapply(nmME, function(nm) try(getME(obj, nm)),
simplify=FALSE)
}
## Alternative to .get_Zt_group
.shget_Zt_group <- function( ii.group, Zt, Gp, ... ){
zIndex.sub <- (Gp[ii.group]+1) : Gp[ii.group+1]
ZZ <- Zt[ zIndex.sub , ]
return(ZZ)
}
##
## Modular implementation
##
.get_GI_parms <- function( object ){
GGamma <- VarCorr(object)
parmList <- lapply(GGamma, function(Lii){ Lii[ lower.tri( Lii, diag=TRUE ) ] })
parmList <- c( parmList, sigma( object )^2 )
parmList
}
.get_GI_matrices <- function( object ){
SS <- .shgetME( object )
Zt <- getME( object, "Zt" )
G <- NULL
G <- vector("list", SS$n.RT+1)
for (ss in 1:SS$n.RT) {
ZZ <- .shget_Zt_group( ss, Zt, SS$Gp )
n.lev <- SS$n.lev.by.RT2[ ss ] ## ; cat(sprintf("n.lev=%i\n", n.lev))
Ig <- sparseMatrix(1:n.lev, 1:n.lev, x=1)
UU <- vector("list", SS$n.parm.by.RT)
for (rr in 1:SS$n.parm.by.RT[ ss ]) {
ii.jj <- .index2UpperTriEntry( rr, SS$n.comp.by.RT[ ss ] )
ii.jj <- unique(ii.jj)
if (length(ii.jj)==1){
EE <- sparseMatrix(ii.jj, ii.jj, x=1, dims=rep(SS$n.comp.by.RT[ ss ], 2))
} else {
EE <- sparseMatrix(ii.jj, ii.jj[2:1], dims=rep(SS$n.comp.by.RT[ ss ], 2))
}
EE <- Ig %x% EE ## Kronecker product
UU[[ rr ]] <- t(ZZ) %*% EE %*% ZZ
}
G[[ ss ]] <- UU
}
n.obs <- nrow(getME(object,'X'))
G[[ length( G ) ]] <- sparseMatrix(1:n.obs, 1:n.obs, x=1 )
G
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.