# using the results of glmnet
# model fits
# model performance statistics and plots
library(caret)
library(dplyr)
library(knitr)
library(reshape2)
################
# read in data #
################
res_3T <- readRDS("data/final/elasticnet_res_glmnet_3T.RDS")
res_7T <- readRDS("data/final/elasticnet_res_glmnet_7T.RDS")
dat_list_3T <- readRDS("data/dat_list_3T_n.RDS")
dat_list_7T <- readRDS("data/dat_list_7T_n.RDS")
NETWORK_NAMES <- names(res_3T)
num_networks <- length(NETWORK_NAMES)
#########
# stats #
#########
stat_res <- list()
for (i in seq_len(num_networks)) {
stat_res[["3T"]][[i]] <-
fit_stats(dat_list_3T[[i]],
res_3T[[i]],
glmnet = TRUE, s = 0.11)
stat_res[["7T"]][[i]] <-
fit_stats(dat_list_7T[[i]],
res_7T[[i]],
glmnet = TRUE, s = 0.11)
}
names(stat_res[["3T"]]) <- NETWORK_NAMES
names(stat_res[["7T"]]) <- NETWORK_NAMES
save(stat_res, file = "data/predict_glmnet_output.RData")
#########
# plots #
#########
# x11()
png("output/glmnet_scatterplot_3T.png")
par(mfrow = c(2,3))
for (i in 1:num_networks) {
plot(stat_res$`3T`[[i]]$obs_status,
stat_res$`3T`[[i]]$ppred[, 1],
ylim = c(0,1),
xaxt = "n",
main = names(stat_res$`3T`)[i],
xlab = "Observed status",
ylab = "Model probablity superager")
axis(1, at = c(1,2), labels = c("Control", "Superager"))
abline(lm(stat_res$`3T`[[i]]$ppred[, 1] ~ stat_res$`3T`[[i]]$obs_status))
}
dev.off()
# x11()
png("output/glmnet_scatterplot_7T.png")
par(mfrow = c(2,3))
for (i in 1:num_networks) {
plot(stat_res$`7T`[[i]]$obs_status,
stat_res$`7T`[[i]]$ppred[, 1],
ylim = c(0,1),
xaxt = "n",
main = names(stat_res$`7T`)[i],
xlab = "Observed status",
ylab = "Model probablity superager")
axis(1, at = c(1,2), labels = c("Control", "Superager"))
abline(lm(stat_res$`7T`[[i]]$ppred[, 1] ~ stat_res$`7T`[[i]]$obs_status))
}
dev.off()
## single plot for 3T and 7T
## 3T: blue, 7T: red
# png("output/rgn_scatterplot_3T_7T.png")
# tiff("output/rgn_scatterplot_3T_7T.tiff", res=300, width = 8, height = 8, units = 'in')
pdf("output/glmnet_scatterplot_3T_7T.pdf")
par(mfrow = c(2,3))
for (i in 1:num_networks) {
plot(x = stat_res$`3T`[[i]]$obs_status + rnorm(n = 31, 0, 0.04),
y = stat_res$`3T`[[i]]$ppred[, 1],
ylim = c(0,1),
xaxt = "n",
main = gsub("_", " ", names(stat_res$`3T`)[i]),
xlab = "Observed status",
ylab = "Model probablity superager",
col = "blue",
pch = 19)
axis(1, at = c(1,2), labels = c("Control", "Superager"))
abline(lm(stat_res$`3T`[[i]]$ppred[, 1] ~ stat_res$`3T`[[i]]$obs_status), col = "blue")
points(stat_res$`7T`[[i]]$obs_status + rnorm(n = 21, 0, 0.04),
stat_res$`7T`[[i]]$ppred[, 1],
ylim = c(0,1),
xaxt = "n",
xlab = "Observed status",
ylab = "Model probablity superager",
col = "red",
pch = 19)
axis(1, at = c(1,2), labels = c("Control", "Superager"))
abline(lm(stat_res$`7T`[[i]]$ppred[, 1] ~ stat_res$`7T`[[i]]$obs_status), col = "red")
}
# plot(1, type = "n", axes=FALSE, xlab="", ylab="")
# legend(x = "top", bty = "n",
# legend = c("3T", "7T"),
# col = c("blue", "red"), lwd=2, cex=1, horiz = FALSE)
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.