R/classifier_metrics_out.R

# NamSor API v2
#
# NamSor API v2 : enpoints to process personal names (gender, cultural origin or ethnicity) in all alphabets or languages. Use GET methods for small tests, but prefer POST methods for higher throughput (batch processing of up to 100 names at a time). Need something you can't find here? We have many more features coming soon. Let us know, we'll do our best to add it! 
#
# The version of the OpenAPI document: 2.0.10
# Contact: contact@namsor.com
# Generated by: https://openapi-generator.tech

#' @docType class
#' @title ClassifierMetricsOut
#' @description ClassifierMetricsOut Class
#' @format An \code{R6Class} generator object
#' @field softwareVersion  character [optional]
#'
#' @field hostAddress  character [optional]
#'
#' @field learnQueueSize  integer [optional]
#'
#' @field bufferSize  integer [optional]
#'
#' @field preClassifyQueueSize  integer [optional]
#'
#' @field factKeysSize  integer [optional]
#'
#' @field factsLearned  integer [optional]
#'
#' @field classifyDurationsCurrent  numeric [optional]
#'
#' @field classifyDurationsSummary  numeric [optional]
#'
#' @field learnDurationsCurrent  numeric [optional]
#'
#' @field learnDurationsSummary  numeric [optional]
#'
#' @field classifierName  character [optional]
#'
#' @field featuresSize  integer [optional]
#'
#' @field aiVettedEstimateTotal  integer [optional]
#'
#' @field aiVettedEstimatePrecision  numeric [optional]
#'
#' @field aiVettedEstimateRecall  numeric [optional]
#'
#' @field aiVettedLearnTotal  integer [optional]
#'
#' @field aiNonVettedEstimateTotal  integer [optional]
#'
#' @field aiNonVettedEstimatePrecision  numeric [optional]
#'
#' @field aiNonVettedEstimateRecall  numeric [optional]
#'
#' @field aiNonVettedLearnTotal  integer [optional]
#'
#' @field metricTimeStamp  integer [optional]
#'
#' @field aiStartTime  integer [optional]
#'
#' @field aiVettedExpectedClassMetrics  list( \link{ExpectedClassMetricsOut} ) [optional]
#'
#' @field aiNonVettedExpectedClassMetrics  list( \link{ExpectedClassMetricsOut} ) [optional]
#'
#'
#' @importFrom R6 R6Class
#' @importFrom jsonlite fromJSON toJSON
#' @export
ClassifierMetricsOut <- R6::R6Class(
  'ClassifierMetricsOut',
  public = list(
    `softwareVersion` = NULL,
    `hostAddress` = NULL,
    `learnQueueSize` = NULL,
    `bufferSize` = NULL,
    `preClassifyQueueSize` = NULL,
    `factKeysSize` = NULL,
    `factsLearned` = NULL,
    `classifyDurationsCurrent` = NULL,
    `classifyDurationsSummary` = NULL,
    `learnDurationsCurrent` = NULL,
    `learnDurationsSummary` = NULL,
    `classifierName` = NULL,
    `featuresSize` = NULL,
    `aiVettedEstimateTotal` = NULL,
    `aiVettedEstimatePrecision` = NULL,
    `aiVettedEstimateRecall` = NULL,
    `aiVettedLearnTotal` = NULL,
    `aiNonVettedEstimateTotal` = NULL,
    `aiNonVettedEstimatePrecision` = NULL,
    `aiNonVettedEstimateRecall` = NULL,
    `aiNonVettedLearnTotal` = NULL,
    `metricTimeStamp` = NULL,
    `aiStartTime` = NULL,
    `aiVettedExpectedClassMetrics` = NULL,
    `aiNonVettedExpectedClassMetrics` = NULL,
    initialize = function(`softwareVersion`=NULL, `hostAddress`=NULL, `learnQueueSize`=NULL, `bufferSize`=NULL, `preClassifyQueueSize`=NULL, `factKeysSize`=NULL, `factsLearned`=NULL, `classifyDurationsCurrent`=NULL, `classifyDurationsSummary`=NULL, `learnDurationsCurrent`=NULL, `learnDurationsSummary`=NULL, `classifierName`=NULL, `featuresSize`=NULL, `aiVettedEstimateTotal`=NULL, `aiVettedEstimatePrecision`=NULL, `aiVettedEstimateRecall`=NULL, `aiVettedLearnTotal`=NULL, `aiNonVettedEstimateTotal`=NULL, `aiNonVettedEstimatePrecision`=NULL, `aiNonVettedEstimateRecall`=NULL, `aiNonVettedLearnTotal`=NULL, `metricTimeStamp`=NULL, `aiStartTime`=NULL, `aiVettedExpectedClassMetrics`=NULL, `aiNonVettedExpectedClassMetrics`=NULL, ...){
      local.optional.var <- list(...)
      if (!is.null(`softwareVersion`)) {
        stopifnot(is.character(`softwareVersion`), length(`softwareVersion`) == 1)
        self$`softwareVersion` <- `softwareVersion`
      }
      if (!is.null(`hostAddress`)) {
        stopifnot(is.character(`hostAddress`), length(`hostAddress`) == 1)
        self$`hostAddress` <- `hostAddress`
      }
      if (!is.null(`learnQueueSize`)) {
        stopifnot(is.numeric(`learnQueueSize`), length(`learnQueueSize`) == 1)
        self$`learnQueueSize` <- `learnQueueSize`
      }
      if (!is.null(`bufferSize`)) {
        stopifnot(is.numeric(`bufferSize`), length(`bufferSize`) == 1)
        self$`bufferSize` <- `bufferSize`
      }
      if (!is.null(`preClassifyQueueSize`)) {
        stopifnot(is.numeric(`preClassifyQueueSize`), length(`preClassifyQueueSize`) == 1)
        self$`preClassifyQueueSize` <- `preClassifyQueueSize`
      }
      if (!is.null(`factKeysSize`)) {
        stopifnot(is.numeric(`factKeysSize`), length(`factKeysSize`) == 1)
        self$`factKeysSize` <- `factKeysSize`
      }
      if (!is.null(`factsLearned`)) {
        stopifnot(is.numeric(`factsLearned`), length(`factsLearned`) == 1)
        self$`factsLearned` <- `factsLearned`
      }
      if (!is.null(`classifyDurationsCurrent`)) {
        stopifnot(is.numeric(`classifyDurationsCurrent`), length(`classifyDurationsCurrent`) == 1)
        self$`classifyDurationsCurrent` <- `classifyDurationsCurrent`
      }
      if (!is.null(`classifyDurationsSummary`)) {
        stopifnot(is.numeric(`classifyDurationsSummary`), length(`classifyDurationsSummary`) == 1)
        self$`classifyDurationsSummary` <- `classifyDurationsSummary`
      }
      if (!is.null(`learnDurationsCurrent`)) {
        stopifnot(is.numeric(`learnDurationsCurrent`), length(`learnDurationsCurrent`) == 1)
        self$`learnDurationsCurrent` <- `learnDurationsCurrent`
      }
      if (!is.null(`learnDurationsSummary`)) {
        stopifnot(is.numeric(`learnDurationsSummary`), length(`learnDurationsSummary`) == 1)
        self$`learnDurationsSummary` <- `learnDurationsSummary`
      }
      if (!is.null(`classifierName`)) {
        stopifnot(is.character(`classifierName`), length(`classifierName`) == 1)
        self$`classifierName` <- `classifierName`
      }
      if (!is.null(`featuresSize`)) {
        stopifnot(is.numeric(`featuresSize`), length(`featuresSize`) == 1)
        self$`featuresSize` <- `featuresSize`
      }
      if (!is.null(`aiVettedEstimateTotal`)) {
        stopifnot(is.numeric(`aiVettedEstimateTotal`), length(`aiVettedEstimateTotal`) == 1)
        self$`aiVettedEstimateTotal` <- `aiVettedEstimateTotal`
      }
      if (!is.null(`aiVettedEstimatePrecision`)) {
        stopifnot(is.numeric(`aiVettedEstimatePrecision`), length(`aiVettedEstimatePrecision`) == 1)
        self$`aiVettedEstimatePrecision` <- `aiVettedEstimatePrecision`
      }
      if (!is.null(`aiVettedEstimateRecall`)) {
        stopifnot(is.numeric(`aiVettedEstimateRecall`), length(`aiVettedEstimateRecall`) == 1)
        self$`aiVettedEstimateRecall` <- `aiVettedEstimateRecall`
      }
      if (!is.null(`aiVettedLearnTotal`)) {
        stopifnot(is.numeric(`aiVettedLearnTotal`), length(`aiVettedLearnTotal`) == 1)
        self$`aiVettedLearnTotal` <- `aiVettedLearnTotal`
      }
      if (!is.null(`aiNonVettedEstimateTotal`)) {
        stopifnot(is.numeric(`aiNonVettedEstimateTotal`), length(`aiNonVettedEstimateTotal`) == 1)
        self$`aiNonVettedEstimateTotal` <- `aiNonVettedEstimateTotal`
      }
      if (!is.null(`aiNonVettedEstimatePrecision`)) {
        stopifnot(is.numeric(`aiNonVettedEstimatePrecision`), length(`aiNonVettedEstimatePrecision`) == 1)
        self$`aiNonVettedEstimatePrecision` <- `aiNonVettedEstimatePrecision`
      }
      if (!is.null(`aiNonVettedEstimateRecall`)) {
        stopifnot(is.numeric(`aiNonVettedEstimateRecall`), length(`aiNonVettedEstimateRecall`) == 1)
        self$`aiNonVettedEstimateRecall` <- `aiNonVettedEstimateRecall`
      }
      if (!is.null(`aiNonVettedLearnTotal`)) {
        stopifnot(is.numeric(`aiNonVettedLearnTotal`), length(`aiNonVettedLearnTotal`) == 1)
        self$`aiNonVettedLearnTotal` <- `aiNonVettedLearnTotal`
      }
      if (!is.null(`metricTimeStamp`)) {
        stopifnot(is.numeric(`metricTimeStamp`), length(`metricTimeStamp`) == 1)
        self$`metricTimeStamp` <- `metricTimeStamp`
      }
      if (!is.null(`aiStartTime`)) {
        stopifnot(is.numeric(`aiStartTime`), length(`aiStartTime`) == 1)
        self$`aiStartTime` <- `aiStartTime`
      }
      if (!is.null(`aiVettedExpectedClassMetrics`)) {
        stopifnot(is.vector(`aiVettedExpectedClassMetrics`), length(`aiVettedExpectedClassMetrics`) != 0)
        sapply(`aiVettedExpectedClassMetrics`, function(x) stopifnot(R6::is.R6(x)))
        self$`aiVettedExpectedClassMetrics` <- `aiVettedExpectedClassMetrics`
      }
      if (!is.null(`aiNonVettedExpectedClassMetrics`)) {
        stopifnot(is.vector(`aiNonVettedExpectedClassMetrics`), length(`aiNonVettedExpectedClassMetrics`) != 0)
        sapply(`aiNonVettedExpectedClassMetrics`, function(x) stopifnot(R6::is.R6(x)))
        self$`aiNonVettedExpectedClassMetrics` <- `aiNonVettedExpectedClassMetrics`
      }
    },
    toJSON = function() {
      ClassifierMetricsOutObject <- list()
      if (!is.null(self$`softwareVersion`)) {
        ClassifierMetricsOutObject[['softwareVersion']] <-
          self$`softwareVersion`
      }
      if (!is.null(self$`hostAddress`)) {
        ClassifierMetricsOutObject[['hostAddress']] <-
          self$`hostAddress`
      }
      if (!is.null(self$`learnQueueSize`)) {
        ClassifierMetricsOutObject[['learnQueueSize']] <-
          self$`learnQueueSize`
      }
      if (!is.null(self$`bufferSize`)) {
        ClassifierMetricsOutObject[['bufferSize']] <-
          self$`bufferSize`
      }
      if (!is.null(self$`preClassifyQueueSize`)) {
        ClassifierMetricsOutObject[['preClassifyQueueSize']] <-
          self$`preClassifyQueueSize`
      }
      if (!is.null(self$`factKeysSize`)) {
        ClassifierMetricsOutObject[['factKeysSize']] <-
          self$`factKeysSize`
      }
      if (!is.null(self$`factsLearned`)) {
        ClassifierMetricsOutObject[['factsLearned']] <-
          self$`factsLearned`
      }
      if (!is.null(self$`classifyDurationsCurrent`)) {
        ClassifierMetricsOutObject[['classifyDurationsCurrent']] <-
          self$`classifyDurationsCurrent`
      }
      if (!is.null(self$`classifyDurationsSummary`)) {
        ClassifierMetricsOutObject[['classifyDurationsSummary']] <-
          self$`classifyDurationsSummary`
      }
      if (!is.null(self$`learnDurationsCurrent`)) {
        ClassifierMetricsOutObject[['learnDurationsCurrent']] <-
          self$`learnDurationsCurrent`
      }
      if (!is.null(self$`learnDurationsSummary`)) {
        ClassifierMetricsOutObject[['learnDurationsSummary']] <-
          self$`learnDurationsSummary`
      }
      if (!is.null(self$`classifierName`)) {
        ClassifierMetricsOutObject[['classifierName']] <-
          self$`classifierName`
      }
      if (!is.null(self$`featuresSize`)) {
        ClassifierMetricsOutObject[['featuresSize']] <-
          self$`featuresSize`
      }
      if (!is.null(self$`aiVettedEstimateTotal`)) {
        ClassifierMetricsOutObject[['aiVettedEstimateTotal']] <-
          self$`aiVettedEstimateTotal`
      }
      if (!is.null(self$`aiVettedEstimatePrecision`)) {
        ClassifierMetricsOutObject[['aiVettedEstimatePrecision']] <-
          self$`aiVettedEstimatePrecision`
      }
      if (!is.null(self$`aiVettedEstimateRecall`)) {
        ClassifierMetricsOutObject[['aiVettedEstimateRecall']] <-
          self$`aiVettedEstimateRecall`
      }
      if (!is.null(self$`aiVettedLearnTotal`)) {
        ClassifierMetricsOutObject[['aiVettedLearnTotal']] <-
          self$`aiVettedLearnTotal`
      }
      if (!is.null(self$`aiNonVettedEstimateTotal`)) {
        ClassifierMetricsOutObject[['aiNonVettedEstimateTotal']] <-
          self$`aiNonVettedEstimateTotal`
      }
      if (!is.null(self$`aiNonVettedEstimatePrecision`)) {
        ClassifierMetricsOutObject[['aiNonVettedEstimatePrecision']] <-
          self$`aiNonVettedEstimatePrecision`
      }
      if (!is.null(self$`aiNonVettedEstimateRecall`)) {
        ClassifierMetricsOutObject[['aiNonVettedEstimateRecall']] <-
          self$`aiNonVettedEstimateRecall`
      }
      if (!is.null(self$`aiNonVettedLearnTotal`)) {
        ClassifierMetricsOutObject[['aiNonVettedLearnTotal']] <-
          self$`aiNonVettedLearnTotal`
      }
      if (!is.null(self$`metricTimeStamp`)) {
        ClassifierMetricsOutObject[['metricTimeStamp']] <-
          self$`metricTimeStamp`
      }
      if (!is.null(self$`aiStartTime`)) {
        ClassifierMetricsOutObject[['aiStartTime']] <-
          self$`aiStartTime`
      }
      if (!is.null(self$`aiVettedExpectedClassMetrics`)) {
        ClassifierMetricsOutObject[['aiVettedExpectedClassMetrics']] <-
          lapply(self$`aiVettedExpectedClassMetrics`, function(x) x$toJSON())
      }
      if (!is.null(self$`aiNonVettedExpectedClassMetrics`)) {
        ClassifierMetricsOutObject[['aiNonVettedExpectedClassMetrics']] <-
          lapply(self$`aiNonVettedExpectedClassMetrics`, function(x) x$toJSON())
      }

      ClassifierMetricsOutObject
    },
    fromJSON = function(ClassifierMetricsOutJson) {
      ClassifierMetricsOutObject <- jsonlite::fromJSON(ClassifierMetricsOutJson)
      if (!is.null(ClassifierMetricsOutObject$`softwareVersion`)) {
        self$`softwareVersion` <- ClassifierMetricsOutObject$`softwareVersion`
      }
      if (!is.null(ClassifierMetricsOutObject$`hostAddress`)) {
        self$`hostAddress` <- ClassifierMetricsOutObject$`hostAddress`
      }
      if (!is.null(ClassifierMetricsOutObject$`learnQueueSize`)) {
        self$`learnQueueSize` <- ClassifierMetricsOutObject$`learnQueueSize`
      }
      if (!is.null(ClassifierMetricsOutObject$`bufferSize`)) {
        self$`bufferSize` <- ClassifierMetricsOutObject$`bufferSize`
      }
      if (!is.null(ClassifierMetricsOutObject$`preClassifyQueueSize`)) {
        self$`preClassifyQueueSize` <- ClassifierMetricsOutObject$`preClassifyQueueSize`
      }
      if (!is.null(ClassifierMetricsOutObject$`factKeysSize`)) {
        self$`factKeysSize` <- ClassifierMetricsOutObject$`factKeysSize`
      }
      if (!is.null(ClassifierMetricsOutObject$`factsLearned`)) {
        self$`factsLearned` <- ClassifierMetricsOutObject$`factsLearned`
      }
      if (!is.null(ClassifierMetricsOutObject$`classifyDurationsCurrent`)) {
        self$`classifyDurationsCurrent` <- ClassifierMetricsOutObject$`classifyDurationsCurrent`
      }
      if (!is.null(ClassifierMetricsOutObject$`classifyDurationsSummary`)) {
        self$`classifyDurationsSummary` <- ClassifierMetricsOutObject$`classifyDurationsSummary`
      }
      if (!is.null(ClassifierMetricsOutObject$`learnDurationsCurrent`)) {
        self$`learnDurationsCurrent` <- ClassifierMetricsOutObject$`learnDurationsCurrent`
      }
      if (!is.null(ClassifierMetricsOutObject$`learnDurationsSummary`)) {
        self$`learnDurationsSummary` <- ClassifierMetricsOutObject$`learnDurationsSummary`
      }
      if (!is.null(ClassifierMetricsOutObject$`classifierName`)) {
        self$`classifierName` <- ClassifierMetricsOutObject$`classifierName`
      }
      if (!is.null(ClassifierMetricsOutObject$`featuresSize`)) {
        self$`featuresSize` <- ClassifierMetricsOutObject$`featuresSize`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiVettedEstimateTotal`)) {
        self$`aiVettedEstimateTotal` <- ClassifierMetricsOutObject$`aiVettedEstimateTotal`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiVettedEstimatePrecision`)) {
        self$`aiVettedEstimatePrecision` <- ClassifierMetricsOutObject$`aiVettedEstimatePrecision`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiVettedEstimateRecall`)) {
        self$`aiVettedEstimateRecall` <- ClassifierMetricsOutObject$`aiVettedEstimateRecall`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiVettedLearnTotal`)) {
        self$`aiVettedLearnTotal` <- ClassifierMetricsOutObject$`aiVettedLearnTotal`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiNonVettedEstimateTotal`)) {
        self$`aiNonVettedEstimateTotal` <- ClassifierMetricsOutObject$`aiNonVettedEstimateTotal`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiNonVettedEstimatePrecision`)) {
        self$`aiNonVettedEstimatePrecision` <- ClassifierMetricsOutObject$`aiNonVettedEstimatePrecision`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiNonVettedEstimateRecall`)) {
        self$`aiNonVettedEstimateRecall` <- ClassifierMetricsOutObject$`aiNonVettedEstimateRecall`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiNonVettedLearnTotal`)) {
        self$`aiNonVettedLearnTotal` <- ClassifierMetricsOutObject$`aiNonVettedLearnTotal`
      }
      if (!is.null(ClassifierMetricsOutObject$`metricTimeStamp`)) {
        self$`metricTimeStamp` <- ClassifierMetricsOutObject$`metricTimeStamp`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiStartTime`)) {
        self$`aiStartTime` <- ClassifierMetricsOutObject$`aiStartTime`
      }
      if (!is.null(ClassifierMetricsOutObject$`aiVettedExpectedClassMetrics`)) {
        self$`aiVettedExpectedClassMetrics` <- ApiClient$new()$deserializeObj(ClassifierMetricsOutObject$`aiVettedExpectedClassMetrics`, "array[ExpectedClassMetricsOut]", loadNamespace("namsor"))
      }
      if (!is.null(ClassifierMetricsOutObject$`aiNonVettedExpectedClassMetrics`)) {
        self$`aiNonVettedExpectedClassMetrics` <- ApiClient$new()$deserializeObj(ClassifierMetricsOutObject$`aiNonVettedExpectedClassMetrics`, "array[ExpectedClassMetricsOut]", loadNamespace("namsor"))
      }
    },
    toJSONString = function() {
      jsoncontent <- c(
        if (!is.null(self$`softwareVersion`)) {
        sprintf(
        '"softwareVersion":
          "%s"
                ',
        self$`softwareVersion`
        )},
        if (!is.null(self$`hostAddress`)) {
        sprintf(
        '"hostAddress":
          "%s"
                ',
        self$`hostAddress`
        )},
        if (!is.null(self$`learnQueueSize`)) {
        sprintf(
        '"learnQueueSize":
          %d
                ',
        self$`learnQueueSize`
        )},
        if (!is.null(self$`bufferSize`)) {
        sprintf(
        '"bufferSize":
          %d
                ',
        self$`bufferSize`
        )},
        if (!is.null(self$`preClassifyQueueSize`)) {
        sprintf(
        '"preClassifyQueueSize":
          %d
                ',
        self$`preClassifyQueueSize`
        )},
        if (!is.null(self$`factKeysSize`)) {
        sprintf(
        '"factKeysSize":
          %d
                ',
        self$`factKeysSize`
        )},
        if (!is.null(self$`factsLearned`)) {
        sprintf(
        '"factsLearned":
          %d
                ',
        self$`factsLearned`
        )},
        if (!is.null(self$`classifyDurationsCurrent`)) {
        sprintf(
        '"classifyDurationsCurrent":
          %d
                ',
        self$`classifyDurationsCurrent`
        )},
        if (!is.null(self$`classifyDurationsSummary`)) {
        sprintf(
        '"classifyDurationsSummary":
          %d
                ',
        self$`classifyDurationsSummary`
        )},
        if (!is.null(self$`learnDurationsCurrent`)) {
        sprintf(
        '"learnDurationsCurrent":
          %d
                ',
        self$`learnDurationsCurrent`
        )},
        if (!is.null(self$`learnDurationsSummary`)) {
        sprintf(
        '"learnDurationsSummary":
          %d
                ',
        self$`learnDurationsSummary`
        )},
        if (!is.null(self$`classifierName`)) {
        sprintf(
        '"classifierName":
          "%s"
                ',
        self$`classifierName`
        )},
        if (!is.null(self$`featuresSize`)) {
        sprintf(
        '"featuresSize":
          %d
                ',
        self$`featuresSize`
        )},
        if (!is.null(self$`aiVettedEstimateTotal`)) {
        sprintf(
        '"aiVettedEstimateTotal":
          %d
                ',
        self$`aiVettedEstimateTotal`
        )},
        if (!is.null(self$`aiVettedEstimatePrecision`)) {
        sprintf(
        '"aiVettedEstimatePrecision":
          %d
                ',
        self$`aiVettedEstimatePrecision`
        )},
        if (!is.null(self$`aiVettedEstimateRecall`)) {
        sprintf(
        '"aiVettedEstimateRecall":
          %d
                ',
        self$`aiVettedEstimateRecall`
        )},
        if (!is.null(self$`aiVettedLearnTotal`)) {
        sprintf(
        '"aiVettedLearnTotal":
          %d
                ',
        self$`aiVettedLearnTotal`
        )},
        if (!is.null(self$`aiNonVettedEstimateTotal`)) {
        sprintf(
        '"aiNonVettedEstimateTotal":
          %d
                ',
        self$`aiNonVettedEstimateTotal`
        )},
        if (!is.null(self$`aiNonVettedEstimatePrecision`)) {
        sprintf(
        '"aiNonVettedEstimatePrecision":
          %d
                ',
        self$`aiNonVettedEstimatePrecision`
        )},
        if (!is.null(self$`aiNonVettedEstimateRecall`)) {
        sprintf(
        '"aiNonVettedEstimateRecall":
          %d
                ',
        self$`aiNonVettedEstimateRecall`
        )},
        if (!is.null(self$`aiNonVettedLearnTotal`)) {
        sprintf(
        '"aiNonVettedLearnTotal":
          %d
                ',
        self$`aiNonVettedLearnTotal`
        )},
        if (!is.null(self$`metricTimeStamp`)) {
        sprintf(
        '"metricTimeStamp":
          %d
                ',
        self$`metricTimeStamp`
        )},
        if (!is.null(self$`aiStartTime`)) {
        sprintf(
        '"aiStartTime":
          %d
                ',
        self$`aiStartTime`
        )},
        if (!is.null(self$`aiVettedExpectedClassMetrics`)) {
        sprintf(
        '"aiVettedExpectedClassMetrics":
        [%s]
',
        paste(sapply(self$`aiVettedExpectedClassMetrics`, function(x) jsonlite::toJSON(x$toJSON(), auto_unbox=TRUE, digits = NA)), collapse=",")
        )},
        if (!is.null(self$`aiNonVettedExpectedClassMetrics`)) {
        sprintf(
        '"aiNonVettedExpectedClassMetrics":
        [%s]
',
        paste(sapply(self$`aiNonVettedExpectedClassMetrics`, function(x) jsonlite::toJSON(x$toJSON(), auto_unbox=TRUE, digits = NA)), collapse=",")
        )}
      )
      jsoncontent <- paste(jsoncontent, collapse = ",")
      paste('{', jsoncontent, '}', sep = "")
    },
    fromJSONString = function(ClassifierMetricsOutJson) {
      ClassifierMetricsOutObject <- jsonlite::fromJSON(ClassifierMetricsOutJson)
      self$`softwareVersion` <- ClassifierMetricsOutObject$`softwareVersion`
      self$`hostAddress` <- ClassifierMetricsOutObject$`hostAddress`
      self$`learnQueueSize` <- ClassifierMetricsOutObject$`learnQueueSize`
      self$`bufferSize` <- ClassifierMetricsOutObject$`bufferSize`
      self$`preClassifyQueueSize` <- ClassifierMetricsOutObject$`preClassifyQueueSize`
      self$`factKeysSize` <- ClassifierMetricsOutObject$`factKeysSize`
      self$`factsLearned` <- ClassifierMetricsOutObject$`factsLearned`
      self$`classifyDurationsCurrent` <- ClassifierMetricsOutObject$`classifyDurationsCurrent`
      self$`classifyDurationsSummary` <- ClassifierMetricsOutObject$`classifyDurationsSummary`
      self$`learnDurationsCurrent` <- ClassifierMetricsOutObject$`learnDurationsCurrent`
      self$`learnDurationsSummary` <- ClassifierMetricsOutObject$`learnDurationsSummary`
      self$`classifierName` <- ClassifierMetricsOutObject$`classifierName`
      self$`featuresSize` <- ClassifierMetricsOutObject$`featuresSize`
      self$`aiVettedEstimateTotal` <- ClassifierMetricsOutObject$`aiVettedEstimateTotal`
      self$`aiVettedEstimatePrecision` <- ClassifierMetricsOutObject$`aiVettedEstimatePrecision`
      self$`aiVettedEstimateRecall` <- ClassifierMetricsOutObject$`aiVettedEstimateRecall`
      self$`aiVettedLearnTotal` <- ClassifierMetricsOutObject$`aiVettedLearnTotal`
      self$`aiNonVettedEstimateTotal` <- ClassifierMetricsOutObject$`aiNonVettedEstimateTotal`
      self$`aiNonVettedEstimatePrecision` <- ClassifierMetricsOutObject$`aiNonVettedEstimatePrecision`
      self$`aiNonVettedEstimateRecall` <- ClassifierMetricsOutObject$`aiNonVettedEstimateRecall`
      self$`aiNonVettedLearnTotal` <- ClassifierMetricsOutObject$`aiNonVettedLearnTotal`
      self$`metricTimeStamp` <- ClassifierMetricsOutObject$`metricTimeStamp`
      self$`aiStartTime` <- ClassifierMetricsOutObject$`aiStartTime`
      self$`aiVettedExpectedClassMetrics` <- ApiClient$new()$deserializeObj(ClassifierMetricsOutObject$`aiVettedExpectedClassMetrics`, "array[ExpectedClassMetricsOut]", loadNamespace("namsor"))
      self$`aiNonVettedExpectedClassMetrics` <- ApiClient$new()$deserializeObj(ClassifierMetricsOutObject$`aiNonVettedExpectedClassMetrics`, "array[ExpectedClassMetricsOut]", loadNamespace("namsor"))
      self
    }
  )
)
namsor/namsor-r-sdk2 documentation built on March 15, 2021, 7:12 p.m.