celltrek: The core function of CellTrek

celltrekR Documentation

The core function of CellTrek

Description

The core function of CellTrek

Usage

celltrek(
  st_sc_int,
  int_assay = "traint",
  sc_data = NULL,
  sc_assay = "RNA",
  reduction = "pca",
  intp = T,
  intp_pnt = 10000,
  intp_lin = F,
  nPCs = 30,
  ntree = 1000,
  dist_thresh = 0.4,
  top_spot = 10,
  spot_n = 10,
  repel_r = 5,
  repel_iter = 10,
  keep_model = F,
  ...
)

Arguments

st_sc_int

Seurat traint object

int_assay

Integration assay ('traint')

sc_data

SC data, optional

sc_assay

SC assay

reduction

Dimension reduction method, usually 'pca'

intp

If True, do interpolation

intp_pnt

Number of interpolation points

intp_lin

If Ture, do linear interpolation

nPCs

Number of PCs

ntree

Number of Trees

dist_thresh

Distance threshold

top_spot

Maximum number of spots that one cell can be charted

spot_n

Maximum number of cells that one spot can contain

repel_r

Repelling radius

repel_iter

Repelling iterations

keep_model

If TRUE, return the trained random forest model

...

Value

Seurat object

Examples

celltrek_res <- celltrek(st_sc_int, int_assay='traint', sc_data=NULL, sc_assay='RNA', reduction='pca', intp=T, intp_pnt=10000, intp_lin=F, nPCs=30, ntree=1000, dist_thresh=.4, top_spot=10, spot_n=10, r=NULL, keep_model=F, ...)

navinlabcode/CellTrek documentation built on April 15, 2022, 8:04 a.m.