celltrek | R Documentation |
The core function of CellTrek
celltrek( st_sc_int, int_assay = "traint", sc_data = NULL, sc_assay = "RNA", reduction = "pca", intp = T, intp_pnt = 10000, intp_lin = F, nPCs = 30, ntree = 1000, dist_thresh = 0.4, top_spot = 10, spot_n = 10, repel_r = 5, repel_iter = 10, keep_model = F, ... )
st_sc_int |
Seurat traint object |
int_assay |
Integration assay ('traint') |
sc_data |
SC data, optional |
sc_assay |
SC assay |
reduction |
Dimension reduction method, usually 'pca' |
intp |
If True, do interpolation |
intp_pnt |
Number of interpolation points |
intp_lin |
If Ture, do linear interpolation |
nPCs |
Number of PCs |
ntree |
Number of Trees |
dist_thresh |
Distance threshold |
top_spot |
Maximum number of spots that one cell can be charted |
spot_n |
Maximum number of cells that one spot can contain |
repel_r |
Repelling radius |
repel_iter |
Repelling iterations |
keep_model |
If TRUE, return the trained random forest model |
... |
Seurat object
celltrek_res <- celltrek(st_sc_int, int_assay='traint', sc_data=NULL, sc_assay='RNA', reduction='pca', intp=T, intp_pnt=10000, intp_lin=F, nPCs=30, ntree=1000, dist_thresh=.4, top_spot=10, spot_n=10, r=NULL, keep_model=F, ...)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.