View source: R/scScoreDimPlot.R
scScoreDimPlot | R Documentation |
MSigdb scoring DimPlot for single-cell clusters
scScoreDimPlot(
object = NULL,
signature = NULL,
reduction = NULL,
cols = NULL,
pt.size = NULL,
split.by = NULL,
title = NULL,
ncol = NULL,
raster = TRUE,
scale = TRUE,
col.min = NA,
col.max = NA
)
object |
Seurat object |
signature |
Name of one gene set |
reduction |
Which dimensionality reduction to use |
cols |
Colors to plot |
pt.size |
Adjust point size to plot, default pt.size=0.5 |
split.by |
Name of a metadata column to split plot by |
title |
Title of the plot |
ncol |
Number of columns for display the plots |
raster |
Convert points to raster format, default is TRUE |
scale |
Determine whether to scale the data, default is TRUE |
col.min |
Minimum scaled average score threshold (smaller values will be set to this) |
col.max |
Maximum scaled average score threshold (larger values will be set to this) |
A ggplot object
data("H3N2_small")
scScoreDimPlot(object = H3N2_small,
signature = "HALLMARK_INFLAMMATORY_RESPONSE",
reduction = "umap",
cols = NULL,
split.by = "sample",
ncol = 2,
pt.size = 1
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.