#==================================================
# David Brown
# brownd7@mskcc.org
#==================================================
rm(list=ls(all=TRUE))
source('config.R')
if (!dir.exists("../res/figureS9")) {
dir.create("../res/figureS9")
}
if (!dir.exists("../res/etc/Source_Data_Extended_Data_Fig_8")) {
dir.create("../res/etc/Source_Data_Extended_Data_Fig_8")
}
#==================================================
# heatmap of ch-related variants in wbc
#==================================================
clinical = read_tsv(file="../res/tables/clinical.tsv", col_types = cols(.default = col_character())) %>%
type_convert() %>%
filter(!(Tumor_Sample_Barcode %in% hypermutators$patient_id)) %>%
filter(!(Tumor_Sample_Barcode %in% msi_hypermutators$patient_id))
write_tsv(clinical, path="../res/tables/clinical_04102019.tsv", append=FALSE, col_names=TRUE)
variants = read.maf(maf="../res/tables/Table_S8_ch_sorted_maftools.maf", clinicalData="../res/tables/clinical_04102019.tsv")
pdf(file="../res/figureS9/onco_plot_wbc.pdf", width=12)
oncoplot(maf = variants, genes = chip_genes,
drawRowBar = TRUE, drawColBar = TRUE,
clinicalFeatures = "Tissue",
annotationColor = list("Tissue" = c(Breast = as.character(cohort_cols["Breast"]),
Lung = as.character(cohort_cols["Lung"]),
Prostate = as.character(cohort_cols["Prostate"]),
Healthy = as.character(cohort_cols["Control"]))),
removeNonMutated = FALSE,
sortByMutation = TRUE,
sortByAnnotation = TRUE,
fontSize = 10)
dev.off()
#==================================================
# oncodrive of ch-related variants in wbc
#==================================================
variants_oncodrive = m0_oncodrive(maf = variants, ignoreGenes=c("MST1", "JAK2", "STAT5B", "GNAS")) %>%
type_convert() %>%
dplyr::select(symbol = Hugo_Symbol,
frac = fract_muts_in_clusters,
pval = pval,
fdr = fdr,
total = total) %>%
mutate(signif = ifelse(pval<.05, "+", "-"))
plot.0 = ggplot(variants_oncodrive, aes(x=frac, y=-log10(fdr), size=total, fill=signif, color=signif, label=symbol)) +
geom_point(alpha=1, shape=21) +
scale_fill_manual(values = c("+" = "#BE1E2D", "-" = "blue")) +
scale_color_manual(values = c("+" = "#BE1E2D", "-" = "blue")) +
theme_classic(base_size=16) +
labs(x = "\nFraction of mutations in cluster", y = expression(-Log[10]~"(FDR)")) +
theme(axis.text.y = element_text(size=13), axis.text.x = element_text(size=13)) +
theme(legend.justification = c(1, 0),
legend.position = c(1, 0),
legend.title = element_blank(),
legend.background = element_blank(),
legend.text=element_text(size=8)) +
guides(fill=guide_legend(title="Significance")) +
guides(size=guide_legend(title="Number of\nmutations")) +
guides(color="none") +
geom_text_repel() +
ylim(0,1.25)
pdf(file="../res/figureS9/onco_drive_wbc.pdf", width=7, height=7)
print(plot.0)
dev.off()
#==================================================
# lollipop of ppm1d and dnmt3a
#==================================================
pdf(file="../res/figureS9/lol_ppm1d.pdf", height=4, width=12)
lollipopPlot(maf=variants, gene="PPM1D", pointSize=2.5)
dev.off()
pdf(file="../res/figureS9/lol_dnmt3a.pdf", height=4, width=12)
lollipopPlot(maf=variants, gene="DNMT3A", pointSize=2.5)
dev.off()
export_x = read_tsv(file="../res/tables/Table_S8_ch_sorted_maftools.maf", col_types = cols(.default = col_character())) %>%
type_convert()
export_y = read_tsv(file="../res/tables/clinical_04102019.tsv", col_types = cols(.default = col_character())) %>%
type_convert()
write_tsv(export_x, path="../res/etc/Source_Data_Extended_Data_Fig_8/Extended_Data_Fig_8a_d_1.tsv", append=FALSE, col_names=TRUE)
write_tsv(export_y, path="../res/etc/Source_Data_Extended_Data_Fig_8/Extended_Data_Fig_8a_d_2.tsv", append=FALSE, col_names=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.