# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# * LOGISTIC ######
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(ggplot2)
# loading data
data(GMAT, package = "difNLR")
data <- GMAT[, 1:20]
score <- rowSums(data) # total score
# logistic model for item 1
fit <- glm(data[, 1] ~ score, family = binomial)
# coefficients
coef(fit) # estimates
sqrt(diag(vcov(fit))) # SE
summary(fit)$coefficients[, 1:2] # estimates and SE
# function for plot
fun <- function(x, b0, b1) {
exp(b0 + b1 * x) / (1 + exp(b0 + b1 * x))
}
# empirical probabilities calculation
df <- data.frame(
x = sort(unique(score)),
y = tapply(data[, 1], score, mean),
size = as.numeric(table(score))
)
# plot of estimated curve
ggplot(df, aes(x = x, y = y)) +
geom_point(aes(size = size),
color = "darkblue",
fill = "darkblue",
shape = 21, alpha = 0.5
) +
stat_function(
fun = fun, geom = "line",
args = list(
b0 = coef(fit)[1],
b1 = coef(fit)[2]
),
size = 1,
color = "darkblue"
) +
xlab("Total score") +
ylab("Probability of correct answer") +
ylim(0, 1) +
ggtitle("Item 1") +
theme_app()
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# * LOGISTIC Z ######
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(ggplot2)
# loading data
data(GMAT, package = "difNLR")
data <- GMAT[, 1:20]
zscore <- scale(rowSums(data)) # standardized total score
# logistic model for item 1
fit <- glm(data[, 1] ~ zscore, family = binomial)
# coefficients
coef(fit) # estimates
sqrt(diag(vcov(fit))) # SE
summary(fit)$coefficients[, 1:2] # estimates and SE
# function for plot
fun <- function(x, b0, b1) {
exp(b0 + b1 * x) / (1 + exp(b0 + b1 * x))
}
# empirical probabilities calculation
df <- data.frame(
x = sort(unique(zscore)),
y = tapply(data[, 1], zscore, mean),
size = as.numeric(table(zscore))
)
# plot of estimated curve
ggplot(df, aes(x = x, y = y)) +
geom_point(aes(size = size),
color = "darkblue",
fill = "darkblue",
shape = 21, alpha = 0.5
) +
stat_function(
fun = fun, geom = "line",
args = list(
b0 = coef(fit)[1],
b1 = coef(fit)[2]
),
size = 1,
color = "darkblue"
) +
xlab("Standardized total score") +
ylab("Probability of correct answer") +
ylim(0, 1) +
ggtitle("Item 1") +
theme_app()
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# * LOGISTIC IRT Z ######
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(ggplot2)
library(msm)
# loading data
data(GMAT, package = "difNLR")
data <- GMAT[, 1:20]
zscore <- scale(rowSums(data)) # standardized total score
# logistic model for item 1
fit <- glm(data[, 1] ~ zscore, family = binomial)
# coefficients
(coef <- c(a = coef(fit)[2], b = -coef(fit)[1] / coef(fit)[2])) # estimates
# SE using delta method
(se <- deltamethod(
list(~x2, ~ -x1 / x2),
mean = coef(fit),
cov = vcov(fit),
ses = TRUE
))
cbind(coef, se) # estimates and SE
# function for plot
fun <- function(x, a, b) {
exp(a * (x - b)) / (1 + exp(a * (x - b)))
}
# empirical probabilities calculation
df <- data.frame(
x = sort(unique(zscore)),
y = tapply(data[, 1], zscore, mean),
size = as.numeric(table(zscore))
)
# plot of estimated curve
ggplot(df, aes(x = x, y = y)) +
geom_point(aes(size = size),
color = "darkblue",
fill = "darkblue",
shape = 21, alpha = 0.5
) +
stat_function(
fun = fun, geom = "line",
args = list(
a = coef[1],
b = coef[2]
),
size = 1,
color = "darkblue"
) +
xlab("Standardized total score") +
ylab("Probability of correct answer") +
ylim(0, 1) +
ggtitle("Item 1") +
theme_app()
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# * NONLINEAR 3P IRT Z #####
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(difNLR)
library(ggplot2)
# loading data
data(GMAT, package = "difNLR")
data <- GMAT[, 1:20]
zscore <- scale(rowSums(data)) # standardized total score
# NLR 3P model for item 1
fun <- function(x, a, b, c) {
c + (1 - c) * exp(a * (x - b)) / (1 + exp(a * (x - b)))
}
fit <- nls(data[, 1] ~ fun(zscore, a, b, c),
algorithm = "port",
start = startNLR(
data, GMAT[, "group"],
model = "3PLcg",
parameterization = "classic"
)[[1]][1:3],
lower = c(-Inf, -Inf, 0),
upper = c(Inf, Inf, 1)
)
# coefficients
coef(fit) # estimates
sqrt(diag(vcov(fit))) # SE
summary(fit)$coefficients[, 1:2] # estimates and SE
# empirical probabilities calculation
df <- data.frame(
x = sort(unique(zscore)),
y = tapply(data[, 1], zscore, mean),
size = as.numeric(table(zscore))
)
# plot of estimated curve
ggplot(df, aes(x = x, y = y)) +
geom_point(aes(size = size),
color = "darkblue",
fill = "darkblue",
shape = 21, alpha = 0.5
) +
stat_function(
fun = fun, geom = "line",
args = list(
a = coef(fit)[1],
b = coef(fit)[2],
c = coef(fit)[3]
),
size = 1,
color = "darkblue"
) +
xlab("Standardized total score") +
ylab("Probability of correct answer") +
ylim(0, 1) +
ggtitle("Item 1") +
theme_app()
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# * NONLINEAR 4P IRT Z ######
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(difNLR)
library(ggplot2)
# loading data
data(GMAT, package = "difNLR")
data <- GMAT[, 1:20]
zscore <- scale(rowSums(data)) # standardized total score
# NLR 4P model for item 1
fun <- function(x, a, b, c, d) {
c + (d - c) * exp(a * (x - b)) / (1 + exp(a * (x - b)))
}
fit <- nls(data[, 1] ~ fun(zscore, a, b, c, d),
algorithm = "port",
start = startNLR(
data, GMAT[, "group"],
model = "4PLcgdg",
parameterization = "classic"
)[[1]][1:4],
lower = c(-Inf, -Inf, 0, 0),
upper = c(Inf, Inf, 1, 1)
)
# coefficients
coef(fit) # estimates
sqrt(diag(vcov(fit))) # SE
summary(fit)$coefficients[, 1:2] # estimates and SE
# empirical probabilities calculation
df <- data.frame(
x = sort(unique(zscore)),
y = tapply(data[, 1], zscore, mean),
size = as.numeric(table(zscore))
)
# plot of estimated curve
ggplot(df, aes(x = x, y = y)) +
geom_point(aes(size = size),
color = "darkblue",
fill = "darkblue",
shape = 21, alpha = 0.5
) +
stat_function(
fun = fun, geom = "line",
args = list(
a = coef(fit)[1],
b = coef(fit)[2],
c = coef(fit)[3],
d = coef(fit)[4]
),
size = 1,
color = "darkblue"
) +
xlab("Standardized total score") +
ylab("Probability of correct answer") +
ylim(0, 1) +
ggtitle("Item 1") +
theme_app()
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# * MODEL COMPARISON ######
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(difNLR)
# loading data
data(GMAT, package = "difNLR")
Data <- GMAT[, 1:20]
zscore <- scale(rowSums(Data)) # standardized total score
# function for fitting models
fun <- function(x, a, b, c, d) {
c + (d - c) * exp(a * (x - b)) / (1 + exp(a * (x - b)))
}
# starting values for item 1
start <- startNLR(
Data, GMAT[, "group"], model = "4PLcgdg",
parameterization = "classic"
)[[1]][, 1:4]
# 2PL model for item 1
fit2PL <- nls(Data[, 1] ~ fun(zscore, a, b, c = 0, d = 1),
algorithm = "port",
start = start[1:2]
)
# NLR 3P model for item 1
fit3PL <- nls(Data[, 1] ~ fun(zscore, a, b, c, d = 1),
algorithm = "port",
start = start[1:3],
lower = c(-Inf, -Inf, 0),
upper = c(Inf, Inf, 1)
)
# NLR 4P model for item 1
fit4PL <- nls(Data[, 1] ~ fun(zscore, a, b, c, d),
algorithm = "port",
start = start,
lower = c(-Inf, -Inf, 0, 0),
upper = c(Inf, Inf, 1, 1)
)
# comparison
### AIC
AIC(fit2PL)
AIC(fit3PL)
AIC(fit4PL)
### BIC
BIC(fit2PL)
BIC(fit3PL)
BIC(fit4PL)
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# * CUMULATIVE LOGIT ######
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(msm)
library(ShinyItemAnalysis)
library(VGAM)
# loading data
data(Science, package = "mirt")
# standardized total score calculation
zscore <- scale(rowSums(Science))
Science[, 1] <- factor(
Science[, 1], levels = sort(unique(Science[, 1])), ordered = TRUE
)
# cumulative logit model for item 1
fit <- vglm(Science[, 1] ~ zscore,
family = cumulative(reverse = TRUE, parallel = TRUE))
# coefficients under intercept/slope parametrization
coef(fit) # estimates
sqrt(diag(vcov(fit))) # SE
# IRT parametrization
# delta method
num_par <- length(coef(fit))
formula <- append(
paste0("~ x", num_par),
as.list(paste0("~ -x", 1:(num_par - 1), "/", "x", num_par))
)
formula <- lapply(formula, as.formula)
se <- deltamethod(
formula,
mean = coef(fit),
cov = vcov(fit),
ses = TRUE
)
# estimates and SE in IRT parametrization
cbind(c(coef(fit)[num_par], -coef(fit)[-num_par] / coef(fit)[num_par]), se)
# plot of estimated cumulative probabilities
plotCumulative(fit, type = "cumulative", matching.name = "Standardized total score")
# plot of estimated category probabilities
plotCumulative(fit, type = "category", matching.name = "Standardized total score")
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# * ADJACENT CATEGORY LOGIT ######
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(msm)
library(ShinyItemAnalysis)
library(VGAM)
# loading data
data(Science, package = "mirt")
# standardized total score calculation
zscore <- scale(rowSums(Science))
Science[, 1] <- factor(
Science[, 1], levels = sort(unique(Science[, 1])), ordered = TRUE
)
# adjacent category logit model for item 1
fit <- vglm(Science[, 1] ~ zscore,
family = acat(reverse = FALSE, parallel = TRUE))
# coefficients under intercept/slope parametrization
coef(fit) # estimates
sqrt(diag(vcov(fit))) # SE
# IRT parametrization
# delta method
num_par <- length(coef(fit))
formula <- append(
paste0("~ x", num_par),
as.list(paste0("~ -x", 1:(num_par - 1), "/", "x", num_par))
)
formula <- lapply(formula, as.formula)
se <- deltamethod(
formula,
mean = coef(fit),
cov = vcov(fit),
ses = TRUE
)
# estimates and SE in IRT parametrization
cbind(c(coef(fit)[num_par], -coef(fit)[-num_par] / coef(fit)[num_par]), se)
# plot of estimated category probabilities
plotAdjacent(fit, matching.name = "Standardized total score")
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# * MULTINOMIAL ######
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(msm)
library(nnet)
library(ShinyItemAnalysis)
# loading data
data(GMAT, GMATtest, GMATkey, package = "difNLR")
# standardized total score calculation
zscore <- scale(rowSums(GMAT[, 1:20]))
# multinomial model for item 1
fit <- multinom(relevel(GMATtest[, 1], ref = paste(GMATkey[1])) ~ zscore)
# coefficients under intercept/slope parametrization
coef(fit) # estimates
sqrt(diag(vcov(fit))) # SE
# IRT parametrization
# delta method
subst_vcov <- function(vcov, cat) {
ind <- grep(cat, colnames(vcov))
vcov[ind, ind]
}
se <- t(sapply(
rownames(coef(fit)),
function(.x) {
vcov_subset <- subst_vcov(vcov(fit), .x)
msm::deltamethod(
list(~ -x1 / x2, ~x2),
mean = coef(fit)[.x, ],
cov = vcov_subset,
ses = TRUE
)
}
))
# estimates and SE in IRT parametrization
cbind(-coef(fit)[, 1] / coef(fit)[, 2], se[, 1], coef(fit)[, 2], se[, 2])
# plot of estimated category probabilities
plotMultinomial(fit, zscore, matching.name = "Standardized total score")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.