#' Baseline correction
#'
#' Used to correct data using the mean of a specified time period. For
#' time-domain data, this will subtract the mean from all data. For `eeg_tfr`
#' objects, a variety of methods are available, including subtraction, and
#' conversion to "dB" change. With a data frame, it will search for "electrode"
#' and "epoch" columns, and groups on these when found. An electrode column is
#' always required; an epoch column is not. Note that baseline correction is
#' always applied on single-trial basis. For baseline correction based on
#' subtraction, this makes no difference compared to averaging first and then
#' baseline correcting, but for divisive measures used with time-frequency data,
#' this distinction can be very important, and can lead to counterintuitive
#' results.
#'
#' @author Matt Craddock \email{matt@@mattcraddock.com}
#' @param data Data to be baseline corrected.
#' @param time_lim Numeric character vector (e.g. time_lim <- c(-.1, 0))
#' defining the time period to use as a baseline. If the value is NULL, it
#' uses the mean of the whole of each epoch if the data is epoched, or the
#' channel mean if the data is continuous.
#' @param verbose Defaults to TRUE. Output descriptive messages to console.
#' @param ... other parameters to be passed to functions
#' @return An `eegUtils` object or a `data.frame`, depending on the input.
#' @examples
#' rm_baseline(demo_epochs)
#' rm_baseline(demo_epochs, c(-.1, 0))
#' @export
rm_baseline <- function(data,
time_lim = NULL,
...) {
UseMethod("rm_baseline", data)
}
#' @describeIn rm_baseline remove baseline from continuous `eeg_data`
#' @export
rm_baseline.eeg_data <- function(data,
time_lim = NULL,
verbose = TRUE,
...) {
if (is.null(time_lim)) {
data$signals <- as.matrix(data$signals)
baseline_dat <- colMeans(data$signals)
if (verbose) {
message("Removing channel means...")
}
} else {
base_times <- select_times(data,
time_lim = time_lim)
baseline_dat <- colMeans(base_times$signals)
if (verbose) {
message(paste("Baseline:", time_lim, "s"))
}
data$signals <- as.matrix(data$signals)
}
data$signals <- baseline_cont(data$signals,
baseline_dat)
data$signals <- tibble::as_tibble(data$signals)
data
}
#' @describeIn rm_baseline Remove baseline from `eeg_epochs`
#' @export
rm_baseline.eeg_epochs <- function(data,
time_lim = NULL,
verbose = TRUE,
...) {
# modify to handle group objects
n_epochs <- length(unique(data$timings$epoch))
n_times <- length(unique(data$timings$time))
n_chans <- ncol(data$signals)
elecs <- names(data$signals)
# I calculate the baseline for each epoch and subtract it; this makes no
# difference to ERP later, but centres each epoch on zero.
if (is.null(time_lim)) {
if (verbose) {
message("Removing channel means per epoch...")
}
# reshape to 3D matrix
orig_chans <- channel_names(data)
data$signals <- as.matrix(data$signals)
dim(data$signals) <- c(n_times, n_epochs, n_chans)
# colMeans gives an n_epochs * n_channels matrix - i.e. baseline value for
# each epoch and channel
baseline_dat <- colMeans(data$signals)
# now we go through each timepoint subtracting the baseline values
data$signals <- baseline_epo(data$signals,
baseline_dat)
} else {
if (verbose) {
message(paste("Baseline:", time_lim, "s"))
}
base_times <- get_epoch_baselines(data,
time_lim)
data$signals <- as.matrix(data$signals)
dim(data$signals) <- c(n_times, n_epochs, n_chans)
data$signals <- baseline_epo(data$signals, base_times)
}
#Reshape and turn back into data frame
data$signals <- array(data$signals,
dim = c(n_epochs * n_times,
n_chans))
colnames(data$signals) <- elecs
data$signals <- tibble::as_tibble(data$signals)
#names(data$signals) <- elecs
data
}
#' @describeIn rm_baseline Legacy method for data.frames
#' @export
rm_baseline.data.frame <- function(data,
time_lim = NULL,
verbose = TRUE,
...) {
warning("rm_baseline.data.frame will be deprecated.")
if (!("time" %in% colnames(data))) {
stop("Time dimension is required.")
}
if (length(time_lim) == 1) {
stop("time_lim should specify the full time range.")
}
# if the data is epoched, group by electrode and epoch; otherwise, just by
# electrode.
if ("epoch" %in% colnames(data)) {
data <- dplyr::group_by(data,
electrode,
epoch,
add = TRUE)
} else{
data <- dplyr::group_by(data,
electrode,
add = TRUE)
}
if (is.null(time_lim)) {
# if no time_lim provided, just delete mean of all time points
data <- dplyr::mutate(data,
amplitude = amplitude - mean(amplitude))
} else {
data_sel <- dplyr::filter(data,
time >= time_lim[1],
time <= time_lim[2])
baseline <- dplyr::summarise(data_sel,
bl = mean(amplitude))
# This is relatively memory intensive - not so bad now but would prefer
# another way. Could get extremely painful with time-frequency data.
data <- dplyr::left_join(data,
baseline)
data <- dplyr::mutate(data,
amplitude = amplitude - bl)
data <- dplyr::select(data,
-bl)
}
data <- ungroup(data)
data
}
#' @param type Type of baseline correction to apply. Options are ("divide",
#' "ratio", "absolute", "db", and "pc")
#' @describeIn rm_baseline Method for `eeg_tfr` objects
#' @export
rm_baseline.eeg_tfr <- function(data,
time_lim = NULL,
type = "divide",
verbose = TRUE,
...) {
valid_types <- c("absolute",
"divide",
"pc",
"ratio",
"db")
if (!(type %in% valid_types)) {
stop("Unknown baseline type ", type)
}
is_group_tfr <- inherits(data,
"eeg_group")
orig_dims <- dimnames(data$signals)
if ("epoch" %in% names(orig_dims)) {
epoched <- TRUE
} else {
epoched <- FALSE
}
if (!is.null(time_lim)) {
if (verbose) {
message(paste("Baseline:", time_lim[1], "-", time_lim[2], "s"))
}
bline <- select_times(data,
time_lim)
no_bline <- FALSE
} else {
no_bline <- TRUE
if (verbose) {
message(paste("Using whole epoch as baseline."))
}
}
if (epoched) {
if (is_group_tfr) {
if (no_bline) {
bline <- apply(data$signals,
c(1, 3, 4, 5),
mean,
na.rm = TRUE)
} else {
bline <- apply(bline$signals,
c(1, 3, 4, 5),
mean,
na.rm = TRUE)
}
} else {
if (no_bline) {
bline <- apply(data$signals,
c(1, 3, 4),
mean,
na.rm = TRUE)
} else {
bline <- apply(bline$signals,
c(1, 3, 4),
mean,
na.rm = TRUE)
}
}
} else {
bline <- colMeans(bline$signals,
na.rm = TRUE)
}
# This function implements the various baseline correction types
do_corrs <- function(data,
type,
bline) {
switch(
type,
"divide" = data / bline,
"pc" = ((data - bline) / bline) * 100,
"absolute" = data - bline,
"db" = 10 * log10(data / bline),
"ratio" = data / bline
)
}
orig_dims <- dim(data$signals)
orig_dimnames <- dimnames(data$signals)
if (epoched) {
if (is_group_tfr) {
data$signals <- sweep(data$signals,
c(1, 3, 4, 5),
bline,
do_corrs,
type = type)
} else {
data$signals <- sweep(data$signals,
c(1, 3, 4),
bline,
do_corrs,
type = type)
}
} else {
data$signals <- apply(data$signals,
1,
do_corrs,
type = type,
bline = bline)
data$signals <- aperm(data$signals,
c(2, 1))
}
dim(data$signals) <- orig_dims
dimnames(data$signals) <- orig_dimnames
data$freq_info$baseline <- type
data$freq_info$baseline_time <- time_lim
data
}
#' @describeIn rm_baseline Method for `eeg_evoked` objects
#' @export
rm_baseline.eeg_evoked <- function(data,
time_lim = NULL,
verbose = TRUE,
...) {
orig_cols <- channel_names(data)
n_times <- length(unique(data$timings$time))
# if (inherits(data,
# "eeg_group")) {
# #n_epochs <- nrow(data$epochs)
n_epochs <- nrow(unique(epochs(data)[, c("epoch", "participant_id")]))
n_participants <- length(unique(epochs(data)$participant_id))
# is_group_data <- TRUE
# } else {
# n_epochs <- length(unique(epochs(data)$epoch))
# n_participants <- length(unique(epochs(data)$participant_id))
# is_group_data <- FALSE
# }
#n_epochs <- nrow(data$epochs)
n_chans <- length(orig_cols)
base_times <- get_epoch_baselines(data,
time_lim)
data$signals <- as.matrix(data$signals)
dim(data$signals) <- c(n_times,
n_epochs,
n_chans)
data$signals <- baseline_epo(data$signals, base_times)
data$signals <- array(data$signals,
dim = c(n_epochs * n_times, n_chans))
colnames(data$signals) <- orig_cols
data$signals <- tibble::as_tibble(data$signals)
data
}
#' @export
rm_baseline.eeg_group <- function(data, ...) {
message("Baseline correction support for `eeg_group` objects is currently experimental, use at own risk...!")
NextMethod("rm_baseline")
}
#' Get epoch baselines
#'
#' Gets the baseline values for every epoch separately
#'
#' @param data data for which to calculate the baselines
#' @param time_lim time limits of the baseline period. numeric vector of length
#' two, c(start, end)
#' @return A numeric matrix of n_epochs x n_channels.
#' @keywords internal
get_epoch_baselines <- function(data,
time_lim) {
#n_epochs <- nrow(epochs(data))
n_epochs <- nrow(unique(epochs(data)[, c("epoch", "participant_id")]))
n_participants <- length(unique(epochs(data)$participant_id))
n_chans <- length(channel_names(data))
chan_names <- colnames(data$signals)
if (is.null(time_lim)) {
data$signals <- as.matrix(data$signals)
n_times <- length(unique(data$timings$time))
dim(data$signals) <- c(n_times,
n_epochs,
n_chans)
base_times <- colMeans(data$signals)
} else {
base_times <- select_times(data,
time_lim = time_lim)
base_times$signals <- as.matrix(base_times$signals)
n_bl_times <- length(unique(base_times$timings$time))
dim(base_times$signals) <- c(n_bl_times,
n_epochs,
n_chans)
base_times <- colMeans(base_times$signals)
}
colnames(base_times) <- chan_names
base_times
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.