tests/testthat/test-example_processing.R

context("example post-processing")

# Skip example testing as they are a bit time-consuming
skip_on_cran()
test_that("fitted() gives correct dimensions", {
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train),
    NROW(fitted(mvgam:::mvgam_example1))
  )

  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train),
    NROW(fitted(mvgam:::mvgam_example2))
  )

  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train),
    NROW(fitted(mvgam:::mvgam_example3))
  )

  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train),
    NROW(fitted(mvgam:::mvgam_example4))
  )
})

test_that("residuals() gives correct dimensions", {
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train),
    NROW(residuals(mvgam:::mvgam_example1))
  )

  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train),
    NROW(residuals(mvgam:::mvgam_example2))
  )

  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train),
    NROW(residuals(mvgam:::mvgam_example3))
  )

  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train),
    NROW(residuals(mvgam:::mvgam_example4, robust = TRUE))
  )
})

test_that("stability() gives correct outputs", {
  metrics <- stability(mvgam:::mvgam_example3)
  expect_range(metrics$prop_int_offdiag, lower = 0, upper = 1)
  expect_range(metrics$prop_int_diag, lower = 0, upper = 1)
  expect_range(metrics$prop_cov_offdiag, lower = 0, upper = 1)
  expect_range(metrics$prop_cov_diag, lower = 0, upper = 1)
})

test_that("irf() gives correct outputs", {
  irfs <- irf(mvgam:::mvgam_example3, h = 12)
  expect_true(length(irfs) == 5)
  expect_true(NROW(irfs[[1]]$process_1) == 12)
  expect_no_error(plot(irfs))

  irfs <- irf(
    mvgam:::mvgam_example3,
    h = 6,
    cumulative = TRUE,
    orthogonal = TRUE
  )
  expect_true(length(irfs) == 5)
  expect_true(NROW(irfs[[1]]$process_1) == 6)
  expect_no_error(plot(irfs))
  expect_s3_class(summary(irfs), 'tbl_df')
  expect_error(
    summary(irfs, probs = c(1)),
    "argument 'probs' must be a vector of length 2"
  )
})

test_that("fevd() gives correct outputs", {
  fevds <- fevd(mvgam:::mvgam_example3, h = 12)
  expect_true(length(fevds) == 5)
  expect_true(NROW(fevds[[1]]$process_1) == 12)
  expect_no_error(plot(fevds))
})

test_that("variable extraction works correctly", {
  expect_true(inherits(
    as.matrix(mvgam:::mvgam_example4, 'rho_gp', regex = TRUE),
    'matrix'
  ))
  expect_true(inherits(
    as_draws(mvgam:::mvgam_example4, 'rho_gp', regex = TRUE),
    'draws'
  ))
  expect_true(inherits(
    as_draws(mvgam:::mvgam_example1, 'obs_params', regex = TRUE),
    'draws'
  ))
  expect_true(inherits(
    as_draws_df(mvgam:::mvgam_example1, 'obs_params', regex = TRUE),
    'draws'
  ))
  expect_true(inherits(
    as_draws_matrix(mvgam:::mvgam_example4, 'obs_params'),
    'draws'
  ))
  expect_true(inherits(
    as_draws_matrix(mvgam:::mvgam_example4, 'trend_params'),
    'draws'
  ))
  expect_true(inherits(as_draws_list(mvgam:::mvgam_example2, 'betas'), 'draws'))
  expect_true(inherits(
    as_draws_rvars(mvgam:::mvgam_example2, 'trend_betas'),
    'draws'
  ))
})

test_that("hindcast() works correctly", {
  hc <- hindcast(mvgam:::mvgam_example1)
  expect_true(inherits(hc$hindcasts, 'list'))
  expect_true(inherits(summary(hc), 'data.frame'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train) /
      NCOL(mvgam:::mvgam_example1$ytimes),
    NCOL(hc$hindcasts$series_1)
  )

  hc <- hindcast(mvgam:::mvgam_example1, type = 'expected')
  expect_true(inherits(hc$hindcasts, 'list'))
  expect_true(inherits(summary(hc), 'data.frame'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train) /
      NCOL(mvgam:::mvgam_example1$ytimes),
    NCOL(hc$hindcasts$series_1)
  )

  hc <- hindcast(mvgam:::mvgam_example4)
  expect_true(inherits(hc$hindcasts, 'list'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train) /
      NCOL(mvgam:::mvgam_example4$ytimes),
    NCOL(hc$hindcasts$series_1)
  )

  hc <- hindcast(mvgam:::mvgam_example4, type = 'expected')
  expect_true(inherits(hc$hindcasts, 'list'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train) /
      NCOL(mvgam:::mvgam_example4$ytimes),
    NCOL(hc$hindcasts$series_1)
  )

  hc <- hindcast(mvgam:::mvgam_example3, type = 'trend')
  expect_true(inherits(hc$hindcasts, 'list'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_train) /
      NCOL(mvgam:::mvgam_example3$ytimes),
    NCOL(hc$hindcasts$series_1)
  )
})

test_that("predict() works correctly", {
  expect_equal(
    dim(predict(
      mvgam:::mvgam_example1,
      type = 'expected',
      process_error = FALSE
    )),
    dim(predict(
      mvgam:::mvgam_example2,
      type = 'expected',
      process_error = FALSE
    ))
  )

  expect_equal(
    dim(predict(
      mvgam:::mvgam_example1,
      type = 'expected',
      process_error = TRUE
    )),
    dim(predict(
      mvgam:::mvgam_example2,
      type = 'expected',
      process_error = TRUE
    ))
  )

  expect_equal(
    dim(posterior_linpred(
      mvgam:::mvgam_example1,
      type = 'expected',
      process_error = FALSE
    )),
    dim(posterior_linpred(
      mvgam:::mvgam_example2,
      type = 'expected',
      process_error = FALSE
    ))
  )

  expect_equal(
    dim(posterior_linpred(
      mvgam:::mvgam_example1,
      type = 'expected',
      process_error = FALSE,
      ndraws = 33
    )),
    dim(posterior_linpred(
      mvgam:::mvgam_example2,
      type = 'expected',
      process_error = FALSE,
      ndraws = 33
    ))
  )

  expect_equal(
    dim(predict(
      mvgam:::mvgam_example3,
      type = 'expected',
      process_error = FALSE
    )),
    dim(predict(
      mvgam:::mvgam_example4,
      type = 'expected',
      process_error = FALSE
    ))
  )

  expect_equal(
    NROW(predict(
      mvgam:::mvgam_example1,
      newdata = mvgam:::mvgam_examp_dat$data_test,
      process_error = FALSE
    )),
    NROW(mvgam:::mvgam_examp_dat$data_test)
  )
  expect_equal(
    NROW(predict(
      mvgam:::mvgam_example3,
      newdata = mvgam:::mvgam_examp_dat$data_test,
      process_error = TRUE
    )),
    NROW(mvgam:::mvgam_examp_dat$data_test)
  )

  expect_equal(
    dim(predict(
      mvgam:::mvgam_example1,
      newdata = mvgam:::mvgam_examp_dat$data_test,
      process_error = FALSE
    )),
    dim(predict(
      mvgam:::mvgam_example2,
      newdata = mvgam:::mvgam_examp_dat$data_test,
      process_error = FALSE
    ))
  )

  expect_error(
    predict(mvgam:::mvgam_example1, newdata = data.frame(time = 1)),
    "the following required variables are missing from newdata:\n season, series"
  )

  expect_error(
    predict(mvgam:::mvgam_example2, newdata = data.frame(season = 1)),
    "the following required variables are missing from newdata:\n time, series"
  )
})

test_that("mcmc_plot() works correctly", {
  expect_ggplot(mcmc_plot(mvgam:::mvgam_example1))
  expect_ggplot(mcmc_plot(mvgam:::mvgam_example2))
  expect_ggplot(mcmc_plot(mvgam:::mvgam_example3))
  expect_ggplot(mcmc_plot(mvgam:::mvgam_example4))

  expect_ggplot(mcmc_plot(mvgam:::mvgam_example1, variable = 'trend_params'))
  expect_ggplot(mcmc_plot(mvgam:::mvgam_example2, variable = 'trend_params'))
  expect_ggplot(mcmc_plot(mvgam:::mvgam_example3, variable = 'trend_params'))
  expect_ggplot(mcmc_plot(mvgam:::mvgam_example4, variable = 'trend_params'))
})

test_that("marginaleffects works correctly", {
  expect_ggplot(marginaleffects::plot_slopes(
    mvgam:::mvgam_example1,
    variables = 'season',
    condition = 'season',
    type = 'link'
  ))
  expect_ggplot(marginaleffects::plot_slopes(
    mvgam:::mvgam_example2,
    variables = 'season',
    condition = 'season',
    type = 'link'
  ))
  expect_ggplot(marginaleffects::plot_slopes(
    mvgam:::mvgam_example3,
    variables = 'season',
    condition = 'season',
    type = 'link'
  ))
  expect_ggplot(marginaleffects::plot_slopes(
    mvgam:::mvgam_example4,
    variables = 'season',
    condition = 'season',
    type = 'link'
  ))

  expect_ggplot(marginaleffects::plot_predictions(
    mvgam:::mvgam_example1,
    condition = 'season',
    type = 'link'
  ))
  expect_ggplot(marginaleffects::plot_predictions(
    mvgam:::mvgam_example2,
    condition = 'season',
    type = 'link'
  ))
  expect_ggplot(marginaleffects::plot_predictions(
    mvgam:::mvgam_example3,
    condition = 'season',
    type = 'link'
  ))
  expect_ggplot(marginaleffects::plot_predictions(
    mvgam:::mvgam_example4,
    condition = 'season',
    type = 'link'
  ))
})

test_that("plot_mvgam... functions work properly", {
  expect_no_error(plot_mvgam_fc(mvgam:::mvgam_example1))
  expect_no_error(plot_mvgam_fc(mvgam:::mvgam_example2))
  expect_no_error(plot(mvgam:::mvgam_example4, type = 'forecast'))
  expect_no_error(SW(plot(mvgam:::mvgam_example3, type = 'smooths')))
  expect_no_error(SW(plot(
    mvgam:::mvgam_example3,
    type = 'smooths',
    realisations = TRUE
  )))
  expect_no_error(plot_mvgam_smooth(
    mvgam:::mvgam_example1,
    smooth = 1,
    derivatives = TRUE
  ))
  expect_no_error(plot_mvgam_smooth(
    mvgam:::mvgam_example1,
    smooth = 1,
    residuals = TRUE
  ))
  expect_no_error(plot_mvgam_smooth(
    mvgam:::mvgam_example1,
    smooth = 1,
    realisations = TRUE
  ))
  expect_error(plot_mvgam_smooth(mvgam:::mvgam_example2, smooth = 1))
  expect_no_error(plot_mvgam_smooth(
    mvgam:::mvgam_example2,
    smooth = 1,
    trend_effects = TRUE
  ))
  expect_no_error(plot_mvgam_smooth(
    mvgam:::mvgam_example2,
    smooth = 1,
    derivatives = TRUE,
    trend_effects = TRUE
  ))
  expect_no_error(plot_mvgam_smooth(
    mvgam:::mvgam_example2,
    derivatives = TRUE,
    residuals = TRUE,
    trend_effects = TRUE
  ))
  expect_no_error(plot_mvgam_smooth(
    mvgam:::mvgam_example1,
    realisations = TRUE
  ))
  expect_no_error(plot_mvgam_smooth(
    mvgam:::mvgam_example4,
    realisations = TRUE,
    newdata = mvgam:::mvgam_examp_dat$data_test
  ))
  expect_message(
    plot(mvgam:::mvgam_example3, type = 'pterms'),
    'No parametric terms in model formula'
  )
  expect_message(plot(mvgam:::mvgam_example1, type = 're'))
  expect_error(plot(mvgam:::mvgam_example1, type = 'factors'))
  expect_no_error(plot(mvgam:::mvgam_example4, type = 'factors'))
  expect_ggplot(plot_mvgam_trend(mvgam:::mvgam_example1))
  expect_ggplot(plot_mvgam_trend(mvgam:::mvgam_example4))
  expect_ggplot(plot_mvgam_trend(mvgam:::mvgam_example4, derivatives = TRUE))
  expect_ggplot(plot_mvgam_trend(
    mvgam:::mvgam_example1,
    realisations = TRUE,
    n_realisations = 2
  ))
  expect_ggplot(plot_mvgam_trend(mvgam:::mvgam_example3, derivatives = TRUE))
  expect_ggplot(plot_mvgam_trend(
    mvgam:::mvgam_example2,
    realisations = TRUE,
    n_realisations = 2
  ))
  expect_ggplot(plot_mvgam_series(object = mvgam:::mvgam_example4))
  expect_ggplot(
    SW(pp_check(
      object = mvgam:::mvgam_example1,
      x = "season",
      type = "resid_ribbon",
      ndraws = 3
    ))
  )
  expect_ggplot(
    SW(pp_check(
      object = mvgam:::mvgam_example2,
      x = "season",
      type = "resid_ribbon",
      ndraws = 3
    ))
  )
  expect_ggplot(
    SW(pp_check(
      object = mvgam:::mvgam_example2,
      x = "season",
      group = "series",
      type = "resid_ribbon_grouped",
      ndraws = 3
    ))
  )
})

test_that("dynamic factor investigations work", {
  lvcors <- lv_correlations(mvgam:::mvgam_example4)
  expect_true(inherits(lvcors, 'list'))
  expect_true(all.equal(
    dim(lvcors$mean_correlations),
    c(
      nlevels(mvgam:::mvgam_example4$obs_data$series),
      nlevels(mvgam:::mvgam_example4$obs_data$series)
    )
  ))
  expect_true(mvgam:::mvgam_example4$use_lv)
  expect_no_error(plot_mvgam_factors(mvgam:::mvgam_example4))
  facconts <- plot_mvgam_factors(mvgam:::mvgam_example4, plot = FALSE)
  expect_true(inherits(facconts, 'data.frame'))
  expect_true(inherits(facconts, 'tbl_df'))

  lvcors <- residual_cor(mvgam:::mvgam_example4)
  expect_true(inherits(lvcors, "mvgam_residcor"))
  expect_no_error(plot(lvcors))

  lvcors <- residual_cor(mvgam:::mvgam_example2)
  expect_true(inherits(lvcors, "mvgam_residcor"))
  expect_equal(rep(1, 4), as.vector(lvcors$cor))

  expect_error(
    residual_cor(mvgam:::mvgam_example1),
    'Cannot compute residual correlations if no latent factors or correlated process errors were modelled'
  )
})

test_that("evaluate() functions working", {
  mod <- mvgam:::mvgam_example1
  out <- eval_mvgam(mod, fc_horizon = 6, n_samples = 100, n_cores = 1)
  expect_true(inherits(out, 'list'))
  expect_true(all(names(out) == levels(mod$obs_data$series)))
  expect_true(NROW(out[[1]]) == 6)

  mod <- mvgam:::mvgam_example3
  out <- eval_mvgam(mod, fc_horizon = 2, n_samples = 100, n_cores = 1)
  expect_true(inherits(out, 'list'))
  expect_true(all(names(out) == levels(mod$obs_data$series)))
  expect_true(NROW(out[[1]]) == 2)

  mod <- mvgam:::mvgam_example4
  out <- eval_mvgam(mod, fc_horizon = 2, n_samples = 100, n_cores = 1)
  expect_true(inherits(out, 'list'))
  expect_true(all(names(out) == levels(mod$obs_data$series)))
  expect_true(NROW(out[[1]]) == 2)

  expect_no_error(compare_mvgams(
    mvgam:::mvgam_example2,
    mvgam:::mvgam_example4,
    n_samples = 100,
    n_evaluations = 2,
    n_cores = 1
  ))
})

test_that("lfo_cv() working", {
  lfs <- SW(lfo_cv(
    mvgam:::mvgam_example1,
    min_t = 8,
    fc_horizon = 1,
    silent = 2
  ))
  expect_true(inherits(lfs, 'mvgam_lfo'))
  expect_ggplot(SW(plot(lfs)))

  lfs <- SW(lfo_cv(
    mvgam:::mvgam_example4,
    min_t = 8,
    fc_horizon = 1,
    silent = 2
  ))
  expect_true(inherits(lfs, 'mvgam_lfo'))
  expect_ggplot(SW(plot(lfs)))
})

test_that("forecast() works correctly", {
  fc <- forecast(
    mvgam:::mvgam_example1,
    newdata = mvgam:::mvgam_examp_dat$data_test
  )
  expect_true(inherits(fc$hindcasts, 'list'))
  expect_true(inherits(fc$forecasts, 'list'))
  fc_summary <- summary(fc)
  expect_true(inherits(fc_summary, 'data.frame'))
  expect_equal(
    NROW(fc_summary),
    NROW(rbind(
      mvgam:::mvgam_examp_dat$data_train,
      mvgam:::mvgam_examp_dat$data_test
    ))
  )

  expect_equal(
    c(
      mvgam:::mvgam_examp_dat$data_train$y[
        which(mvgam:::mvgam_examp_dat$data_train$series == 'series_2')
      ],
      mvgam:::mvgam_examp_dat$data_test$y[
        which(mvgam:::mvgam_examp_dat$data_test$series == 'series_2')
      ]
    ),
    fc_summary$truth[
      which(fc_summary$series == 'series_2')
    ]
  )
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_test) /
      NCOL(mvgam:::mvgam_example1$ytimes),
    NCOL(fc$forecasts$series_1),
    length(fc$test_observations$series_1)
  )

  sc <- score(fc)
  expect_true(inherits(sc, 'list'))
  expect_true(all.equal(
    names(sc),
    c(levels(mvgam:::mvgam_examp_dat$data_test$series), 'all_series')
  ))
  expect_error(score(fc, score = 'elpd'))
  expect_no_error(score(fc, score = 'energy'))
  expect_no_error(score(fc, score = 'variogram'))
  expect_no_error(score(fc, score = 'sis'))

  fc <- forecast(
    mvgam:::mvgam_example1,
    newdata = mvgam:::mvgam_examp_dat$data_test,
    type = 'expected'
  )
  expect_true(inherits(fc$hindcasts, 'list'))
  expect_true(inherits(fc$forecasts, 'list'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_test) /
      NCOL(mvgam:::mvgam_example1$ytimes),
    NCOL(fc$forecasts$series_1),
    length(fc$test_observations$series_1)
  )

  fc <- forecast(
    mvgam:::mvgam_example2,
    newdata = mvgam:::mvgam_examp_dat$data_test,
    type = 'link'
  )
  expect_true(inherits(fc$hindcasts, 'list'))
  expect_true(inherits(fc$forecasts, 'list'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_test) /
      NCOL(mvgam:::mvgam_example2$ytimes),
    NCOL(fc$forecasts$series_1),
    length(fc$test_observations$series_1)
  )
  sc <- score(fc, score = 'elpd')
  expect_true(inherits(sc, 'list'))
  expect_true(all.equal(
    names(sc),
    c(levels(mvgam:::mvgam_examp_dat$data_test$series), 'all_series')
  ))

  fc <- forecast(
    mvgam:::mvgam_example2,
    newdata = mvgam:::mvgam_examp_dat$data_test,
    type = 'expected'
  )
  expect_true(inherits(fc$hindcasts, 'list'))
  expect_true(inherits(fc$forecasts, 'list'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_test) /
      NCOL(mvgam:::mvgam_example2$ytimes),
    NCOL(fc$forecasts$series_1),
    length(fc$test_observations$series_1)
  )

  fc <- forecast(
    mvgam:::mvgam_example3,
    newdata = mvgam:::mvgam_examp_dat$data_test
  )
  expect_true(inherits(fc$hindcasts, 'list'))
  expect_true(inherits(fc$forecasts, 'list'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_test) /
      NCOL(mvgam:::mvgam_example3$ytimes),
    NCOL(fc$forecasts$series_1),
    length(fc$test_observations$series_1)
  )

  fc <- forecast(
    mvgam:::mvgam_example3,
    newdata = mvgam:::mvgam_examp_dat$data_test,
    type = 'expected'
  )
  expect_true(inherits(fc$hindcasts, 'list'))
  expect_true(inherits(fc$forecasts, 'list'))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_test) /
      NCOL(mvgam:::mvgam_example3$ytimes),
    NCOL(fc$forecasts$series_1),
    length(fc$test_observations$series_1)
  )

  fc <- forecast(
    mvgam:::mvgam_example4,
    newdata = mvgam:::mvgam_examp_dat$data_test
  )
  expect_true(inherits(fc$hindcasts, 'list'))
  expect_true(inherits(fc$forecasts, 'list'))
  expect_no_error(plot(fc))
  expect_no_error(plot(fc, hide_xlabels = TRUE))
  expect_no_error(plot(fc, ylab = 'banana'))
  expect_no_error(plot(fc, realisations = TRUE, n_realisations = 3))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_test) /
      NCOL(mvgam:::mvgam_example4$ytimes),
    NCOL(fc$forecasts$series_1),
    length(fc$test_observations$series_1)
  )

  fc <- forecast(
    mvgam:::mvgam_example4,
    newdata = mvgam:::mvgam_examp_dat$data_test,
    type = 'expected'
  )
  expect_true(inherits(fc$hindcasts, 'list'))
  expect_true(inherits(fc$forecasts, 'list'))
  expect_no_error(plot(fc, hide_xlabels = TRUE))
  expect_no_error(plot(fc, ylab = 'banana'))
  expect_no_error(plot(fc, realisations = TRUE, n_realisations = 2))
  expect_equal(
    NROW(mvgam:::mvgam_examp_dat$data_test) /
      NCOL(mvgam:::mvgam_example4$ytimes),
    NCOL(fc$forecasts$series_1),
    length(fc$test_observations$series_1)
  )
})

test_that("loo() works correctly", {
  options(mc.cores = 1)
  expect_loo(SW(loo(mvgam:::mvgam_example1)))
  expect_loo(SW(loo(mvgam:::mvgam_example2)))
  expect_loo(SW(loo(mvgam:::mvgam_example3)))
  expect_loo(SW(loo(mvgam:::mvgam_example4)))

  p <- SW(loo_compare(
    mvgam:::mvgam_example1,
    mvgam:::mvgam_example2,
    model_names = c('banana')
  ))
  expect_true(inherits(p, 'compare.loo'))

  p <- SW(loo_compare(
    mvgam:::mvgam_example1,
    mvgam:::mvgam_example2,
    mvgam:::mvgam_example3,
    mvgam:::mvgam_example4
  ))
  expect_true(inherits(p, 'compare.loo'))
})

test_that("how_to_cite() works correctly", {
  description <- how_to_cite(mvgam:::mvgam_example3)
  expect_true(
    grepl('To encourage stability', description$methods_text)
  )

  description <- how_to_cite(mvgam:::mvgam_example4)
  expect_true(
    grepl('Gaussian Process functional', description$methods_text)
  )
})
nicholasjclark/mvgam documentation built on April 17, 2025, 9:39 p.m.