tests/testthat/test-update.R

context("update.mvgam")

skip_on_cran()

test_that("update() working correctly", {
  # Can update trend_model
  mod <- update(
    mvgam:::mvgam_example1,
    trend_model = AR(p = 2),
    control = list(max_treedepth = 11),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_true(attr(mod$model_data, 'trend_model') == 'AR2')
  expect_true(any(grepl(
    'ar2~std_normal();',
    gsub(' ', '', mod$model_file),
    fixed = TRUE
  )))
  expect_true(mod$call == mvgam:::mvgam_example1$call)

  # Update trend_model and formula
  mod <- update(
    mvgam:::mvgam_example1,
    formula = y ~ s(season, k = 6) - 1,
    trend_model = PW(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_true(attr(mod$model_data, 'trend_model') == 'PWlinear')
  expect_true(any(grepl(
    'to_vector(delta_trend)~double_exponential(0,changepoint_scale);',
    gsub(' ', '', mod$model_file),
    fixed = TRUE
  )))
  expect_true(mod$call != mvgam:::mvgam_example1$call)
  expect_true(rlang::f_rhs(mod$call) == 's(season, k = 6) - 1')

  # Errors should pass from mvgam()
  expect_error(
    update(
      mvgam:::mvgam_example1,
      formula = y ~ s(season, k = 6) - 1,
      trend_model = PW(growth = 'logistic'),
      run_model = FALSE
    ),
    'Capacities must be supplied as a variable named "cap" for logistic growth'
  )

  # Update to include shared observation params
  mod <- update(
    mvgam:::mvgam_example1,
    share_obs_params = TRUE,
    run_model = FALSE
  )
  expect_true(any(grepl(
    'real<lower=0>sigma_obs;',
    gsub(' ', '', mod$model_file),
    fixed = TRUE
  )))
})

test_that("update() passes original knots correctly", {
  # Simulate some data and fit a Poisson AR1 model
  simdat <- sim_mvgam(n_series = 1, trend_model = AR())
  mod <- SM(mvgam(
    y ~ s(season, bs = 'cc'),
    knots = list(season = c(0.5, 12.5)),
    trend_model = AR(),
    noncentred = TRUE,
    data = simdat$data_train,
    chains = 2,
    silent = 2
  ))
  expect_true(identical(
    attr(mod$mgcv_model, 'knots'),
    list(season = c(0.5, 12.5))
  ))

  # Update to an AR2 model
  updated_mod <- update(
    mod,
    trend_model = AR(p = 2),
    noncentred = TRUE,
    run_model = FALSE
  )
  expect_true(identical(
    attr(updated_mod$mgcv_model, 'knots'),
    list(season = c(0.5, 12.5))
  ))
})
nicholasjclark/mvgam documentation built on April 17, 2025, 9:39 p.m.