#' @import party measures varImp
#' @importFrom stats complete.cases
#' @export
fastvarImp = function(object, mincriterion = 0, conditional = FALSE, threshold = 0.2,
nperm = 1, OOB = TRUE, pre1.0_0 = conditional, measure = "multiclass.Brier",
parallel = TRUE, ...) {
# Some tests
measureList = measures::listAllMeasures()
if (!(measure %in% measureList[, 1]))
stop("measure should be a measure of the measures package")
# Test the Class
response = object@responses
CLASS = all(response@is_nominal | response@is_ordinal)
PROB = measureList$probabilities[measureList[,1] == measure]
MEASURECLASS = measureList$task[measureList[,1] == measure]
if (CLASS & (MEASURECLASS %in% c("regression", "multilabel")))
stop("Measure is not suitable for classification")
if (!CLASS & !(MEASURECLASS %in% "regression"))
stop("Measure is not suitable for regression")
MEASUREMINIMIZE = measureList$minimize[measureList[,1] == measure]
input = object@data@get("input")
xnames = colnames(input)
inp = initVariableFrame(input, trafo = NULL)
y = object@responses@variables[[1]]
if (length(response@variables) != 1)
stop("cannot compute variable importance measure for multivariate response")
if (conditional || pre1.0_0) {
if (!all(complete.cases(inp@variables)))
stop("cannot compute variable importance measure with missing values")
}
if (CLASS) {
if (PROB) {
error = function(x, oob, ...) {
xoob = t(sapply(x, function(x) x))[oob,]
colnames(xoob) = levels(y)
yoob = y[oob]
return(do.call(measure, list(xoob, yoob, ...)))
}
}else {
error = function(x, oob, ...) {
xoob = t(sapply(x, function(x) x))[oob,]
colnames(xoob) = levels(y)
xoob = colnames(xoob)[max.col(xoob,ties.method="first")]
yoob = y[oob]
return(do.call(measure, list(yoob, xoob, ...)))
}
}
} else {
error = function(x, oob, ...) {
xoob = unlist(x)[oob]
yoob = y[oob]
return(do.call(measure, list(xoob, yoob, ...)))
}
}
w = object@initweights
if (max(abs(w - 1)) > sqrt(.Machine$double.eps))
warning(sQuote("varImp"), " with non-unity weights might give misleading results")
foo <- function(b) {
perror = matrix(0, nrow = nperm * length(object@ensemble), ncol = length(xnames))
colnames(perror) = xnames
tree <- object@ensemble[[b]]
if (OOB) {
oob = object@weights[[b]] == 0
} else {
oob = rep(TRUE, length(xnames))
}
p = party_intern(tree, inp, mincriterion, -1L, fun = "R_predict")
eoob = error(p, oob, ...)
for (j in unique(varIDs(tree))) {
for (per in 1:nperm) {
if (conditional || pre1.0_0) {
tmp = inp
ccl = create_cond_list(conditional, threshold,
xnames[j], input)
if (is.null(ccl)) {
perm = sample(which(oob))
}
else {
perm = conditional_perm(ccl, xnames, input,
tree, oob)
}
tmp@variables[[j]][which(oob)] = tmp@variables[[j]][perm]
p = party_intern(tree, tmp, mincriterion, -1L, fun = "R_predict")
} else {
p = party_intern(tree, inp, mincriterion, as.integer(j), fun = "R_predict")
}
minSign = ifelse(MEASUREMINIMIZE, 1, -1)
perror[(per + (b - 1) * nperm), j] = minSign * (error(p,oob, ...) - eoob)
}
}
return(perror)
}
liste_perror <- plyr::alply(1:length(object@ensemble), 1, .fun=foo, .parallel=parallel, .paropts=list(.packages="party"))
all_perror <- Reduce('+',liste_perror)
all_perror = as.data.frame(all_perror)
return(MeanDecrease = colMeans(all_perror, na.rm = TRUE))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.