# Varying d_threshold plot
# Libraries
rm(list = ls())
set.seed(1)
library(CoupledHalfT)
library(dplyr)
library(ggplot2)
library(latex2exp)
library(gridExtra)
library(ggridges)
library(doParallel)
registerDoParallel(cores = detectCores()-2)
iterations <- 10
metric_trajectories_crn_by_p <- data.frame()
n <- 100
threshold <- 0
for (p in seq(500,1000,100)){
cat("p =", p, "\n")
s <- 20
true_beta <- matrix(0,p,1)
true_beta[1:s] = 2^(-(seq(s)/4-9/4))
X <- matrix(rnorm(n*p), nrow = n, ncol = p)
X_transpose <- t(X)
#Error terms
error_std <- 2
error_terms = error_std*rnorm(n, mean = 0, sd = 1)
y = X%*%true_beta + error_terms
mc_chain_size <- 1
max_iterations <- 2e3
results_ <- foreach (i = 1:iterations, .combine = rbind) %dopar% {
chain_two_scale_1 <-
coupled_half_t_mcmc(mc_chain_size, X, X_transpose, y,
a0=1, b0=1, std_MH=0.8,
t_dist_df=1, max_iterations=max_iterations,
epsilon_eta=threshold)
# Plot of tvUB
tvUB_full <- (chain_two_scale_1$metric_d)[2:length(chain_two_scale_1$metric_d)]
data.frame(n, p, iteration = i, two_scale_threshold=threshold,
t= c(1:length(tvUB_full)), metric_d=tvUB_full)
}
metric_trajectories_crn_by_p <- rbind(metric_trajectories_crn_by_p, results_)
}
# Saving/ loading data
# save(metric_trajectories_crn_by_p, file = "examples/two_scale_coupling/metric_trajectories_crn_by_p.RData")
# load("examples/two_scale_coupling/metric_trajectories_crn_by_p.RData")
plots_df_threshold <- metric_trajectories_crn_by_p %>%
dplyr::group_by(n, p, two_scale_threshold, t) %>%
dplyr::summarise(metric_d=mean(metric_d), count=n())
metric_d_hist_crn <-
ggplot(data = metric_trajectories_crn_by_p, aes(y = p)) +
geom_density_ridges(alpha=0.8, aes(x = metric_d, group = p, fill = as.factor(two_scale_threshold)))+
# geom_density_ridges(alpha=0.8, aes(x = metric_d, group = p, fill = as.factor(p)))+
ylab(TeX('Dimension $p$')) +
xlab(TeX('$(d(C_t^{(1)}, C_t^{(2)}))_{t=0}^{2000}$ histogram')) +
scale_y_continuous(breaks=seq(600,1e3,2e2)) +
scale_x_continuous(breaks=seq(0,1,0.5)) +
scale_fill_manual(name=TeX('$d_{threshold}$'),
values = c("grey")) +
# scale_fill_viridis_d(name=TeX('$p$')) +
theme_classic(base_size = 16) # + theme(legend.position = 'none')
metric_d_hist_crn
#ggsave(filename = "examples/two_scale_coupling/metric_d_hist_crn.pdf", plot = metric_d_hist_crn, width = 4, height = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.