# Metric d vs. Euclidean distance plot
# Libraries
rm(list = ls())
set.seed(1)
library(CoupledHalfT)
library(dplyr)
library(ggplot2)
library(latex2exp)
library(gridExtra)
library(ggridges)
iterations <- 1 # A single trajectory considered
metric_trajectories_crn_by_p <- data.frame()
n <- 100
threshold <- 0 # Common random numbers coupling
for (p in seq(1000,1000,100)){
s <- 10
true_beta <- matrix(0,p,1)
true_beta[1:s] = 2^(-(seq(s)/4-9/4))
X <- matrix(rnorm(n*p), nrow = n, ncol = p)
X_transpose <- t(X)
#Error terms
error_std <- 0.5
error_terms = error_std*rnorm(n, mean = 0, sd = 1)
y = X%*%true_beta + error_terms
mc_chain_size <- 1
max_iterations <- 1e3
for (i in c(1:iterations)){ # Indep trajectories for a fixed dataset
chain_two_scale_1 <-
coupled_half_t_mcmc(mc_chain_size, X, X_transpose, y,
a0=1, b0=1, std_MH=0.8,
t_dist_df=1, max_iterations=max_iterations,
epsilon_eta=threshold)
# Plot of tvUB
tvUB_full <- (chain_two_scale_1$metric_d)[2:length(chain_two_scale_1$metric_d)]
rates_1 <- chain_two_scale_1$beta_samples1[c(2:max_iterations),]^2*chain_two_scale_1$xi_samples1[c(2:max_iterations)]/(2*chain_two_scale_1$sigma2_samples1[c(2:max_iterations)])
rates_2 <- chain_two_scale_1$beta_samples2[c(1:(max_iterations-1)),]^2*chain_two_scale_1$xi_samples2[c(1:(max_iterations-1))]/(2*chain_two_scale_1$sigma2_samples2[c(1:(max_iterations-1))])
l1_distance <- rowSums(abs(rates_1-rates_2))
l1_log_distance <- rowSums(abs(log(rates_1/rates_2)))
# Full couple prob plot
metric_trajectories_crn_by_p <-
rbind(metric_trajectories_crn_by_p,
data.frame(n, p, iteration = i, two_scale_threshold=threshold,
t= c(1:length(tvUB_full)), metric_d=tvUB_full,
metric_l1=l1_distance,
metric_l1_log=l1_log_distance))
print(c(threshold,i))
}
}
# Saving/ loading data
# save(metric_trajectories_crn_by_p, file = "examples/two_scale_coupling/metric_trajectories_crn_by_p.RData")
# load("examples/two_scale_coupling/metric_trajectories_crn_by_p.RData")
# Plots
plots_df_metric <- metric_trajectories_crn_by_p %>%
dplyr::group_by(n, p, two_scale_threshold, t) %>%
dplyr::summarise(metric_d=mean(metric_d), metric_l1=mean(metric_l1),
metric_l1_log=mean(metric_l1_log), count=n()) %>%
tidyr::gather(metric, value, metric_d:metric_l1_log)
metric_d_plot_crn <-
ggplot(plots_df_metric %>% filter(t <= 1000),
aes(y=value, x=t, color=as.factor(metric)),
main= 'Full eta vector couplings prob') +
geom_line(size=1) +
ylab(TeX('Distance')) +
xlab(TeX('iteration')) +
#scale_x_continuous(breaks=c(0,1e3,2e3)) +
#scale_y_continuous(limits = c(0,1)) +
scale_y_log10() +
scale_colour_viridis_d(name=TeX('$Metric$'),
labels = unname(TeX(c("$d(C, \\tilde{C})",
"$\\sum_j | m_j- \\tilde{m}_j |",
"$\\sum_j | \\log(m_j / \\tilde{m}_j) |")))) +
theme_classic(base_size = 18) + theme(legend.position = 'right')
metric_d_plot_crn
#ggsave(filename = "/Users/niloybiswas/Dropbox/horseshoe_coupling/Drafts/images/two_scale_coupling_plot/choice_of_metric_d_plot.pdf", plot = metric_d_plot_crn, width = 8, height = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.