| rxSEinner | R Documentation | 
This is for the so-called inner problem.
rxSEinner(
  obj,
  predfn,
  pkpars = NULL,
  errfn = NULL,
  init = NULL,
  grad = FALSE,
  sum.prod = FALSE,
  pred.minus.dv = TRUE,
  only.numeric = FALSE,
  optExpression = TRUE,
  interaction = TRUE,
  ...,
  promoteLinSens = TRUE,
  theta = FALSE,
  addProp = c("combined2", "combined1")
)
rxSymPySetupPred(
  obj,
  predfn,
  pkpars = NULL,
  errfn = NULL,
  init = NULL,
  grad = FALSE,
  sum.prod = FALSE,
  pred.minus.dv = TRUE,
  only.numeric = FALSE,
  optExpression = TRUE,
  interaction = TRUE,
  ...,
  promoteLinSens = TRUE,
  theta = FALSE,
  addProp = c("combined2", "combined1")
)
| obj | RxODE object | 
| predfn | Prediction function | 
| pkpars | Pk Pars function | 
| errfn | Error function | 
| init | Initialization parameters for scaling. | 
| grad | Boolaen indicated if the the equations for the gradient be calculated | 
| sum.prod | A boolean determining if RxODE should use more numerically stable sums/products. | 
| pred.minus.dv | Boolean stating if the FOCEi objective function is based on PRED-DV (like NONMEM). Default TRUE. | 
| only.numeric | Instead of setting up the sensitivities for the inner problem, modify the RxODE to use numeric differentiation for the numeric inner problem only. | 
| optExpression | Optimize the model text for computer evaluation. | 
| interaction | Boolean to determine if dR^2/deta is calculated for FOCEi (not needed for FOCE) | 
| promoteLinSens | Promote solved linear compartment systems to sensitivity-based solutions. | 
| theta | Calculate THETA derivatives instead of ETA derivatives. By default FALSE | 
| addProp | one of "combined1" and "combined2"; These are the two forms of additive+proportional errors supported by monolix/nonmem: combined1: transform(y)=transform(f)+(a+b*f^c)*eps combined2: transform(y)=transform(f)+(a^2+b^2*f^(2c))*eps | 
RxODE object expanded with predfn and with calculated sensitivities.
Matthew L. Fidler
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.