mh_gibbs_2pl: mh_gibbs_2pl Function

Description Usage Arguments Value Examples

Description

this functions implements the metropolis-hastings within gibbs algorithm proposed in molano thesis.

Usage

1
2
mh_gibbs_2pl(dat, idname, psi0, theta0, B = diag(c(rep(9, dim(X)[2]), rep(1,
  dim(X)[2]))), b = c(rep(0, length(psi0))), Nc = 10000)

Arguments

dat

a data frame containing test info. rows for individuals and columns for items. aditionally, a variable which identify individuals must be supied.

idname

atomic character giving the name of the id variable in dat.

psi0

a vector of initial values for parameter psi0. See nlf_2pl documentation.

theta0

vector of initial values for latent traits. See nlf_2pl documentation.

B

Prior covariance matrix for psi.

b

Prior expected values for psi.

Nc

number of mcmc iterations.

Value

a list with the following objects:

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
nitems<-7
nind<-100
sort(alpha_o<-runif(nitems,0.6,1.5))
sort(beta_o<-runif(nitems,-2.4,2.4))
d_o<- -alpha_o*beta_o

summary(theta_o<-rnorm(nind))
temp.b<-matrix(beta_o,ncol=nitems,nrow=nind, byrow =T)
temp.a<-matrix(alpha_o,ncol=nitems,nrow=nind, byrow =T)
temp.t<-matrix(theta_o,ncol=nitems,nrow=nind)
eta<-temp.a*(theta_o-temp.b)
pmod<-exp(eta)/(1+exp(eta))
test<-data.frame(ifelse(runif(nitems*nind)<pmod,1,0))
colnames(test)<-paste("t",1:nitems,sep="")
sort(apply(test,2,function(i)sum(i)*100/length(i)))
test<-data.frame(test,id=1:nind)
bres<-mh_gibbs_2pl(test,"id",psi0=c(d_o,log(alpha_o)),theta_o,Nc=1000)

nmolanog/bayesuirt documentation built on May 23, 2019, 8:52 a.m.