skip_on_cran()
library(MARSS)
context("MARSSkfss tests")
# Easy model
set.seed(123)
dat <- cumsum(rnorm(20))
mod.list <- list(tinitx = 1, U = "zero", R = "unconstrained", Q = "unconstrained", B = "unconstrained", x0 = matrix(dat[1] * 1.0001))
kemfit1 <- MARSS(dat, model = mod.list, silent = TRUE)
kemfit2 <- MARSS(dat, model = list(tinitx = 1, U = "zero", R = "unconstrained", Q = "unconstrained", B = "unconstrained", x0 = matrix(dat[1] * 1.0001)), fun.kf = "MARSSkfss", silent = TRUE)
test_that("compare logLik simple R small tinitx=1", {
expect_equal(kemfit1$logLik, kemfit2$logLik)
})
kf1 <- MARSSkfss(kemfit1)
kf2 <- MARSSkfas(kemfit1)
kf1_list <- kf1[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt")]
kf2_list <- kf2[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt")]
test_that("compare kf list simple R small tinitx=1", {
expect_equal(kf1_list, kf2_list)
})
kemfit1 <- MARSS(dat, model = list(tinitx = 0, U = "zero", R = "unconstrained", Q = "unconstrained", B = "unconstrained"), silent = TRUE)
kemfit2 <- MARSS(dat, model = list(tinitx = 0, U = "zero", R = "unconstrained", Q = "unconstrained", B = "unconstrained"), fun.kf = "MARSSkfss", silent = TRUE)
test_that("compare logLik simple R small tinitx=0", {
expect_equal(kemfit1$logLik, kemfit2$logLik)
})
kf1 <- MARSSkfss(kemfit1)
kf2 <- MARSSkfas(kemfit1)
kf1_list <- kf1[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
kf2_list <- kf2[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
test_that("compare kf list simple R small", {
expect_equal(kf1_list, kf2_list)
})
# Little harder model
dat <- t(harborSealWA)
dat <- dat[2:4, ] # remove the year row
for (Q in list("unconstrained", "diagonal and equal", "equalvarcov", "zero")) {
for (B in c("identity", "diagonal and unequal")) {
for (R in list("unconstrained", "diagonal and equal", "equalvarcov", "zero")) {
if (B == "diagonal and unequal" && (is.list(Q) || is.list(R))) next
mod <- list(Q = Q, Z = "identity", R = R, B = B, U = "zero", x0 = dat[, 1, drop = FALSE] * 1.1)
if (B != "identity" && R != "zero") mod$tinitx <- 1
if (Q == "zero" && R == "zero") next
if (Q == "zero" && B != "identity") next
kemfit1 <- MARSS(dat, model = mod, fun.kf = "MARSSkfss", silent = TRUE)
kemfit2 <- MARSS(dat, model = mod, fun.kf = "MARSSkfas", silent = TRUE)
test_that(paste("HarborSeal logLik", Q, R, B), {
expect_equal(kemfit1$logLik, kemfit2$logLik)
})
kf1 <- MARSSkfss(kemfit1)
kf2 <- MARSSkfas(kemfit1)
kf1_list <- kf1[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
kf2_list <- kf2[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
test_that(paste("HarborSeal kflist", Q, R, B), {
expect_equal(kf1_list, kf2_list)
})
}
}
}
# test B unconstrained
Q <- "diagonal and unequal"
B <- "unconstrained"
R <- "diagonal and unequal"
mod <- list(Q = Q, Z = "identity", R = R, B = B, U = "zero", x0 = "unequal", tinitx = 1)
kemfit1 <- MARSS(dat, model = mod, fun.kf = "MARSSkfss", silent = TRUE)
kemfit2 <- MARSS(dat, model = mod, fun.kf = "MARSSkfas", silent = TRUE)
test_that("HarborSeal logLik B unconstrained", {
expect_true(kemfit2$logLik - kemfit1$logLik < 0.000644)
})
test_that("HarborSeal par B unconstrained", {
expect_equal(kemfit1$par, kemfit2$par)
})
kf1 <- MARSSkfss(kemfit1)
kf2 <- MARSSkfas(kemfit1)
kf1_list <- kf1[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
kf2_list <- kf2[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
test_that("HarborSeal kflist B unconstrained", {
expect_equal(kf1_list, kf2_list)
})
# test Q with some zeros
Q <- ldiag(list("q1", 0, "q2"))
B <- "identity"
R <- "diagonal and equal"
mod <- list(Q = Q, Z = "identity", R = R, B = B, U = "zero", x0 = "unequal", tinitx = 1)
kemfit1 <- MARSS(dat, model = mod, fun.kf = "MARSSkfss", silent = TRUE)
kemfit2 <- MARSS(dat, model = mod, fun.kf = "MARSSkfas", silent = TRUE)
test_that("HarborSeal logLik Q with 0", {
expect_equal(kemfit2$logLik, kemfit1$logLik)
})
test_that("HarborSeal par kfss to kfas fits Q w zero", {
expect_equal(kemfit1$par, kemfit2$par)
})
kf1 <- MARSSkfss(kemfit1)
kf2 <- MARSSkfas(kemfit1)
kf1_list <- kf1[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
kf2_list <- kf2[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
test_that("HarborSeal kflist Q w zero", {
expect_equal(kf1_list, kf2_list)
})
R <- ldiag(list("r1", 0, "r2"))
B <- "identity"
Q <- "diagonal and equal"
mod <- list(Q = Q, Z = "identity", R = R, B = B, U = "zero", x0 = "unequal", tinitx = 1)
kemfit1 <- MARSS(dat, model = mod, fun.kf = "MARSSkfss", silent = TRUE)
kemfit2 <- MARSS(dat, model = mod, fun.kf = "MARSSkfas", silent = TRUE)
test_that("HarborSeal logLik R with 0", {
expect_equal(kemfit2$logLik, kemfit1$logLik)
})
test_that("HarborSeal par R w zero", {
expect_equal(kemfit1$par, kemfit2$par)
})
kf1 <- MARSSkfss(kemfit1)
kf2 <- MARSSkfas(kemfit1)
kf1_list <- kf1[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
kf2_list <- kf2[c("xtT", "VtT", "Vtt1T", "x0T", "V0T", "xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
test_that("HarborSeal kflist R w zero", {
expect_equal(kf1_list, kf2_list)
})
# Wonky model; this is simple version of the GDP test
# 1) Define some data
df_marss <- matrix(NA, 2, 10)
df_marss[1, ] <- c(NA, NA, NA, -0.002666915, NA, NA, -0.002064963, NA, NA, 0.01564208)
df_marss[2, ] <- c(NA, 0.0005053405, 0.001147921, -0.002476667, 0.003195476, 0.003941519, -0.001529331, 0.004960794, 0.005527753, 0.004705563)
# 2) Define State Space matrices
# Matrix Z
Z <- matrix(list(
"0.33*z1", "z2",
"0.67*z1", 0,
"z1", 0,
"0.67*z1", 0,
"0.33*z1", 0,
1 / 3, 0,
2 / 3, 0,
1, 0,
2 / 3, 0,
1 / 3, 0,
0, 1,
0, 0
), 2, 12)
m <- nrow(Z)
p <- ncol(Z)
# Matrix R
R <- matrix(list(0), m, m)
# Matrix B
B <- matrix(list(
"b1", 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
"b2", 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "b6", 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "b7", 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b11", 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "b12", 0
), 12, 12)
# Matrix Q
Q <- matrix(list(
"q1", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, "q6", 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "q11", 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
), 12, 12)
# Rest of matrices
x0 <- matrix(0, p, 1)
A <- matrix(0, m, 1)
U <- matrix(0, p, 1)
V0 <- 5 * diag(1, p)
U <- matrix(0, p, 1)
# 3) Estimation
# Define model
model.gen <- list(Z = Z, A = A, R = R, B = B, U = U, Q = Q, x0 = x0, V0 = V0, tinitx = 0)
fit <- MARSS(df_marss, model = model.gen, method = "BFGS", fun.kf = "MARSSkfas", silent = TRUE)
kf1 <- MARSSkfss(kemfit1, smoother = FALSE)
kf2 <- MARSSkfas(kemfit1)
kf1_list <- kf1[c("xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
kf2_list <- kf2[c("xtt1", "Vtt1", "xtt", "Vtt", "logLik")]
test_that(paste("GDF model kflist"), {
expect_equal(kf1_list, kf2_list)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.