besselK_boost | R Documentation |
Leapfrog routine
Leapfrog routine
besselK_boost(x, v)
besselK(x, v)
matern(nu, a, rho, tau, D)
trenchDetcpp(c)
trenchInvcpp(v)
loglikeGPcpp(Y, Z, A, logcovDet, sigmak, nk, D, Y2)
likelihoodGPcpp(Xk, tau, h, nk, D, materncov = 0L, nu = 2)
gradientrhomatern(Y, drvrhomatern, nk, D, Z, A, sigmak)
gradientamatern(Y, amatern, nk, D, Z, A, sigmak)
gradientGPcppmatern(Xk, tau, h, nk, D, nu)
LeapfrogGPcppPC(Xk, lambda, tau, p, x, m, nk, D, L, delta, nu)
sampleGPmeanmaterncpp(Xk, tau, h, nk, D, nu)
makeComponent(X, BX, Y, BY, j)
sampleGPmeancpp(Xk, tau, h, nk, D)
normalisedData(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, j)
normalisedDatamatern(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, j, nu)
centeredDatamatern(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, K, nu)
componentloglike(centereddata, sigmak)
comploglike(centereddata, sigmak)
comploglikelist(centereddata, sigmak)
sampleDirichlet(numSamples, alpha)
sampleOutliercpp(allocoutlierprob)
sampleAlloccpp(allocprob)
centeredData(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, K)
mahaInt(X, mu, sigma, isChol = FALSE)
dmvtInt(X, mu, cholDec, log, df)
dmvtCpp(X_, mu_, sigma_, df_, log_, isChol_)
gradientGPcpp(Xk, tau, h, nk, D)
LeapfrogGPcpp(Xk, tau, p, x, m, nk, D, L, delta)
rcpp_pgdraw(b, c)
x |
position |
v |
argument of trench algorithm |
nu |
smoothness parameter of matern covariance |
a |
amplitude |
rho |
length-scale |
tau |
indexing term |
D |
number of samples |
c |
parameter of PG distribution |
Y |
pointer to data to be subset. X and Y will be joined |
Z |
special matrix from trench algorithm (see Crook et al arxiv 2019) |
A |
special matrix from trench algorithm (see Crook et al arxiv 2019) |
logcovDet |
log determine of the covariancematrix |
sigmak |
variance term |
nk |
number of observations |
Y2 |
vectorised data (see Crook et al arxiv 2019) |
Xk |
The data |
h |
vector of hyperparamters |
materncov |
logical indicating whether to use matern or gaussian covariance. Defaults to Guassian covariance |
drvrhomatern |
deterivate of matern covariance wrt to rho |
amatern |
deterivate of matern covariance wrt to amplitude |
lambda |
parameters of penalised complexity prior |
p |
momentum |
m |
mass |
L |
iterations |
delta |
stepsize |
X |
data |
BX |
indexing set to make component |
BY |
pointer to subsetting matrix |
j |
indicator of localisations i.e. niche j |
Xknown |
data with known localisations |
Xunknown |
data with unknown localisations |
BXun |
indexing set for unknown localisations |
hypers |
vector of hyperparameters |
K |
number of components |
centereddata |
pointer to centered data |
numSamples |
The number of samples desired |
alpha |
The concentration parameter |
allocoutlierprob |
The probabilities of being allocated to the outlier component |
allocprob |
probability of being allocated to particular component |
mu |
mean |
sigma |
variance matrix |
isChol |
boolen indicated whether sigma is cholesky decomposition |
cholDec |
Cholesky decomposition of variance matrix |
log |
boolen of log density |
df |
degrees of freedom for t distribution |
X_ |
the data |
mu_ |
the mean |
sigma_ |
the variance matrix |
df_ |
the degrees of freedom |
log_ |
return log density (boolean). |
isChol_ |
is variance matrix in cholesky decomposition |
b |
parameter of PG distribution |
A numeric indicating the density of the t-distribution
dmvtCpp(diag(1,1,1), 1, diag(1,1,1), 1, TRUE, TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.