robustMahalanobis | R Documentation |
These function implement the MR method of Itzhak et al
robustMahalanobis(delta)
reprodScore(x, y, method = c("pearson"))
mrMethod(objectCond1, objectCond2, method = "2017")
delta |
The difference profile to compute the squared mahalanobis distance |
x |
Numeric vector to compute reproducibility score |
y |
Numeric vector to compute reproducibility score |
method |
Correlation method. Default is Pearson |
objectCond1 |
A list of |
objectCond2 |
A list of |
The squared Mahalanobis distance
The R score
The MR score of the Ithzak et al. 2016/2017
## Generate some example data
library("pRolocdata")
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 4L,
numDyn = 100L)
data <- tansim$lopitrep
control <- data[1:2]
treatment <- data[3:4]
## compute delta matrix
deltaMatrix <- exprs(control[[1]]) - exprs(treatment[[1]])
res <- bandle:::robustMahalanobis(deltaMatrix)
##' @examples
## Generate some example data
library("pRolocdata")
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 4L,
numDyn = 100L)
data <- tansim$lopitrep
control <- data[1:2]
treatment <- data[3:4]
## compute delta matrix
deltaMatrix1 <- exprs(control[[1]]) - exprs(treatment[[1]])
deltaMatrix2 <- exprs(control[[2]]) - exprs(treatment[[2]])
mr_score <- bandle:::reprodScore(deltaMatrix1, deltaMatrix2)
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
d1 <- tansim$lopitrep
control1 <- d1[1:3]
treatment1 <- d1[4:6]
mr1 <- mrMethod(objectCond1 = control1, objectCond2 = treatment1)
plot(mr1$Mscore, mr1$Rscore, pch = 21,
xlab = "MScore", ylab = "RScore")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.