spatial2D | R Documentation |
Generate a PCA plot with smoothed probability contours
spatial2D(
object,
params,
fcol = "markers",
dims = c(1, 2),
cov.function = NULL,
theta = 2,
derivative = 2,
k = 1,
cond = 1,
n = 1,
breaks = c(0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7),
aspect = 0.5
)
object |
An instance of class |
params |
An instance of class |
fcol |
Feature columns that defines the markers. Defaults to "markers". |
dims |
The PCA dimensions to plot. Defaults to |
cov.function |
The covariance function for the smoothing kernel. Defaults to wendland.cov |
theta |
The theta parameter of the wendland.cov. Defaults to 2. |
derivative |
The derivative paramter of the wendland.cov. Defaults to 2. |
k |
The k parameter of the wendland.cov |
cond |
Which conditions do we want to plot. Must be |
n |
The chain from which we plot the probability distribution. Default is 1. |
breaks |
The levels at which to plot the contours. Defaults to c(0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7) |
aspect |
The aspect ratio of the pca plots. Defaults to 0.5. |
returns a named vector of differential localisation probabilities
## Not run:
## Generate some example data
library("pRolocdata")
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 4L,
numDyn = 100L)
data <- tansim$lopitrep
control <- data[1:2]
treatment <- data[3:4]
## fit GP params
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(0.5, 1, 100), nrow = 1)))
## run bandle
res <- bandle(objectCond1 = control,
objectCond2 = treatment,
gpParams = gpParams,
fcol = "markers",
numIter = 5L,
burnin = 1L,
thin = 2L,
numChains = 1,
BPPARAM = SerialParam(RNGseed = 1),
seed = 1)
## Process the results
bandleres <- bandleProcess(res)
## plot the results
spatial2D(control[[1]], bandleres)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.