diffLocalisationProb | R Documentation |
These functions implement helper functions for the bandle method
diffLocalisationProb(params)
bootstrapdiffLocprob(params, top = 20, Bootsample = 5000, decreasing = TRUE)
binomialDiffLocProb(params, top = 20, nsample = 5000, decreasing = TRUE)
params |
An instance of |
top |
The number of proteins for which to sample from the binomial distribution |
Bootsample |
Number of Bootstramp samples. Default is 5000 |
decreasing |
Starting at protein most likely to be differentially localization |
nsample |
how many samples to return from the binomial distribution |
returns a named vector of differential localisation probabilities
returns a matrix of size Bootsample * top containing bootstrap
returns a list containing empirical binomial samples
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x)
fitGPmaternPC(x, hyppar = matrix(c(0.5, 1, 100), nrow = 1)))
d1 <- tansim$lopitrep
control1 <- d1[1:3]
treatment1 <- d1[4:6]
mcmc1 <- bandle(objectCond1 = control1, objectCond2 = treatment1, gpParams = gpParams,
fcol = "markers", numIter = 10L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcmc1 <- bandleProcess(mcmc1)
dp <- diffLocalisationProb(mcmc1)
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep,
function(x) fitGPmaternPC(x, hyppar = matrix(c(0.5, 1, 100), nrow = 1)))
d1 <- tansim$lopitrep
control1 <- d1[1:3]
treatment1 <- d1[4:6]
mcmc1 <- bandle(objectCond1 = control1, objectCond2 = treatment1, gpParams = gpParams,
fcol = "markers", numIter = 10L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcmc1 <- bandleProcess(mcmc1)
bdp <- bootstrapdiffLocprob(mcmc1)
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
numRep = 6L,
numDyn = 100L)
gpParams <- lapply(tansim$lopitrep,
function(x) fitGPmaternPC(x, hyppar = matrix(c(0.5, 1, 100), nrow = 1)))
d1 <- tansim$lopitrep
control1 <- d1[1:3]
treatment1 <- d1[4:6]
mcmc1 <- bandle(objectCond1 = control1, objectCond2 = treatment1, gpParams = gpParams,
fcol = "markers", numIter = 10L, burnin = 1L, thin = 2L,
numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
mcmc1 <- bandleProcess(mcmc1)
dp <- binomialDiffLocProb(mcmc1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.