#' Internal function for SUGS with variable selection algorithm. This function
#' manages the random orderings and loops.
#' @param mydata A data matrix with rows as observations.
#' @param featiter The number of iterations of variable selection
#' @param clustiter The number of random ordering, for which to apply SUGS.
#' @param intfeatures A binary matrix of the intial variable set, probably chosen using function \code{pSelect}.
#' See documentation for \code{pSelect} for more details.
#' @param Model The method used for Model select, either PML, ML or Both. If you select both
#' the PML will be used to perform model selection.
#' @param mu_0 The mean hyperparameter, default is the column means of the data matrix.
#' @param lambda_0 The variance of the Guassian mean prior, the dafault value is \code{0.01}.
#' @param nu_0 The degrees of freedom hyperparameter, the default value is \code{2 * (D + 2)}, where \code{D} is the number of variables.
#' @param S_0 The scale hyperparamter, the deault value is a tenth of the column variance of the data matrix.
#' @param betaHat A grid of hyperparameters for the dirichlet concentration parameter, the default is \code{c(1, 5, 15, 30, 50, 100)}.
#' @param a The scale of the gamma prior for the dirichlet concentration parameter, the dafault value is \code{10}.
#' @param b The rate of the gamma prior for the dirichlet concentration parameter, the default value is \code{1}.
#' @param w The prior probability of a variable belong to the irrelevant or relevant partition. The vector must
#' contain two entries the first entry being the probabiliy of being irreleavnt and the second being the probability of being relevant
#' The default value is \code{c(0.5,0.5)}.
#' @param BPPARAM Support for parallel processing using the
#' \code{BiocParallel} infrastructure. When missing (default),
#' the default registered \code{BiocParallelParam} parameters are
#' used. Alternatively, one can pass a valid
#' \code{BiocParallelParam} parameter instance: \code{SnowParam},
#' \code{MulticoreParam}, \code{DoparParam}, \ldots see the
#' \code{BiocParallel} package for details. To revert to the
#' origianl serial implementation, use \code{NULL}.
#'
#'
#' @return A matrix of cluster allocations for the number of iterations, a vector of either log PML, log ML or both,
#' the number of clusters at each interations, the random ordering used and the last function output for these.
runsugsvarsel<-function(mydata,
featiter,
clustiter,
intfeatures,
Model,
mu_0 = NULL,
lambda_0 = 0.01,
nu_0 = NULL,
S_0 = NULL,
betaHat = c(0.01, 0.1, 1, 5, 10, 15, 30, 50, 100),
a = 10,
b = 1,
w = c(0.5, 0.5),
BPPARAM = bpparam()
) {
N <- nrow(mydata)
D <- ncol(mydata)
T <- featiter
#produce random orderings of the data
rand <- lapply(seq(1:(clustiter-1)), function(x) sample(nrow(mydata)))
rand <- c(list(seq(1:N)), rand)
res <- bplapply(rand, function(x, mydata, featInt, Model, T, mu_0, lambda_0, nu_0, S_0,
betaHat, a, b, w) {
suppressMessages(library(sugsvarsel))
for(t in 1:T){
res <- sugsComp(mydata[x,], featInt, Model, mu_0 = mu_0,
lambda_0 = lambda_0, nu_0 = nu_0, S_0 = S_0,
betaHat = betaHat, a = a, b = b, w = w) #call sugs
featInt <- res$features
}
return(res)
}, mydata = mydata, featInt = intfeatures, Model = Model, T = featiter,
mu_0 = mu_0, lambda_0 = lambda_0, nu_0 = nu_0, S_0 = S_0,
betaHat = betaHat, a = a, b = b, w = w, BPPARAM = BPPARAM)
member <- matrix(unlist(lapply(res, function(x) x$member)), ncol = N, byrow = TRUE)
clusters <- unlist(lapply(res, function(x) x$K))
ordering <- matrix(unlist(rand), ncol = N, byrow = TRUE)
features <- matrix(unlist(lapply(res, function(x) x$features)), ncol = ncol(mydata), byrow = TRUE)
ML <- unlist(lapply(res, function(x) x$ML))
if (Model=="PML") {
LPML <- unlist(lapply(res, function(x) x$LPML))
} else if(Model=="Both"){
LPML <- unlist(lapply(res, function(x) x$LPML))
ML <- unlist(lapply(res, function(x) x$ML))
} else{
ML <- unlist(lapply(res, function(x) x$ML))
}
if(Model=="PML"){
return(list(member=member, clusters=clusters, LPML=LPML, ordering = ordering, features=features))
} else if(Model=="Both"){
return(list(member=member, clusters=clusters, LPML=LPML, ML=ML, ordering = ordering, features=features))
} else{
return(list(member=member, clusters=clusters, ML=ML, ordering = ordering, features=features))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.