source("extras/getResults/DataPulls.R")
source("extras/getResults/PlotsAndTables.R")
shinySettings <- list(dataFolder = "G:/StudyResults/EhdenRaDmardsEstimation2/NewShinyDataAll2", blind = FALSE)
dataFolder <- shinySettings$dataFolder
blind <- shinySettings$blind
connection <- NULL
positiveControlOutcome <- NULL
splittableTables <- c("covariate_balance", "preference_score_dist", "kaplan_meier_dist")
files <- list.files(dataFolder, pattern = ".rds")
# Find part to remove from all file names (usually databaseId):
databaseFileName <- files[grepl("^database", files)]
removeParts <- paste0(gsub("database", "", databaseFileName), "$")
# Remove data already in global environment:
for (removePart in removeParts) {
tableNames <- gsub("_t[0-9]+_c[0-9]+$", "", gsub(removePart, "", files[grepl(removePart, files)]))
camelCaseNames <- SqlRender::snakeCaseToCamelCase(tableNames)
camelCaseNames <- unique(camelCaseNames)
camelCaseNames <- camelCaseNames[!(camelCaseNames %in% SqlRender::snakeCaseToCamelCase(splittableTables))]
suppressWarnings(
rm(list = camelCaseNames)
)
}
# Load data from data folder. R data objects will get names derived from the filename:
loadFile <- function(file, removePart) {
tableName <- gsub("_t[0-9]+_c[0-9]+$", "", gsub(removePart, "", file))
camelCaseName <- SqlRender::snakeCaseToCamelCase(tableName)
if (!(tableName %in% splittableTables)) {
newData <- readRDS(file.path(dataFolder, file))
colnames(newData) <- SqlRender::snakeCaseToCamelCase(colnames(newData))
if ("databaseId" %in% colnames(newData)) {
newData$databaseId[newData$databaseId == "Amb_EMR"] <- "AmbEMR"
newData$databaseId[newData$databaseId == "BELGIUM"] <- "DABelgium"
newData$databaseId[newData$databaseId == "GERMANY"] <- "DAGermany"
newData$databaseId[newData$databaseId == "IPCI-HI-LARIOUS-RA"] <- "ICPI"
newData$databaseId[newData$databaseId == "LPDFRANCE"] <- "LPDFrance"
newData$databaseId[newData$databaseId == "Optum"] <- "ClinFormatics"
newData$databaseId[newData$databaseId == "PanTher"] <- "OptumEHR"
}
if ("sources" %in% colnames(newData)) {
newData$sources <- gsub("Amb_EMR", "AmbEMR", newData$sources)
newData$sources <- gsub("GERMANY", "DAGermany", newData$sources)
newData$sources <- gsub("Optum", "ClinFormatics", newData$sources)
newData$sources <- gsub("PanTher", "OptumEHR", newData$sources)
}
if (exists(camelCaseName, envir = .GlobalEnv)) {
existingData <- get(camelCaseName, envir = .GlobalEnv)
newData <- rbind(existingData, newData)
newData <- unique(newData)
}
assign(camelCaseName, newData, envir = .GlobalEnv)
}
invisible(NULL)
}
for (removePart in removeParts) {
lapply(files[grepl(removePart, files)], loadFile, removePart)
}
tcos <- unique(cohortMethodResult[, c("targetId", "comparatorId", "outcomeId")])
tcos <- tcos[tcos$outcomeId %in% outcomeOfInterest$outcomeId, ]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.