#' PS-Integrated Composite Likelihood Estimation (WATT)
#'
#' Estimate the mean of the outcome based on PS-integrated composite likelihood
#' approach with weights of ATT (WATT).
#' Variance is estimated by Jack-Knife method. Applies to the case
#' when there is only one external data source.
#'
#' @inheritParams psrwe_powerp
#'
#' @param stderr_method Method for computing StdErr, see Details
#' @param n_bootstrap Number of bootstrap samples (for bootstrap stderr)
#' @param ... Parameters for \code{rwe_cl_watt}
#'
#' @details \code{stderr_method} include \code{jk} as default
#' using Jackknife method within each stratum,
#' \code{sjk} for simple Jackknife method for combined estimates
#' such as point estimates in single arm or treatment effects in RCT, or
#' \code{cjk} for complex Jackknife method including refitting PS model,
#' matching, trimming, calculating borrowing parameters, and
#' combining overall estimates.
#' Note that \code{sjk} may take a while longer to finish and
#' \code{cjk} will take even much longer to finish.
#' The \code{sbs} and \code{cbs} is for simple and complex Bootstrap
#' methods.
#'
#' @return A data frame with class name \code{PSRWE_RST}. It contains the
#' composite estimation of the mean for each stratum as well as the
#' jackknife estimation for each subject. The results can be further
#' summarized by its S3 method \code{summary}.
#' The results can be also analyzed by \code{psrwe_outana} for outcome
#' analysis and inference.
#'
#' @examples
#' data(ex_dta)
#' dta_ps <- psrwe_est(ex_dta,
#' v_covs = paste("V", 1:7, sep = ""),
#' v_grp = "Group",
#' cur_grp_level = "current",
#' nstrata = 1)
#' ps_borrow <- psrwe_borrow(total_borrow = 30, dta_ps)
#' rst <- psrwe_compl_watt(ps_borrow, v_outcome = "Y_Bin")
#' rst
#'
#' @export
#'
psrwe_compl_watt <- function(dta_psbor, v_outcome = "Y",
outcome_type = c("continuous", "binary"),
stderr_method = c("jk", "sjk", "cjk",
"sbs", "cbs", "none"),
n_bootstrap = 200,
...) {
## check
stopifnot(inherits(dta_psbor,
what = get_rwe_class("PSDIST")))
outcome_type <- match.arg(outcome_type)
stopifnot(v_outcome %in% colnames(dta_psbor$data))
stderr_method <- match.arg(stderr_method)
## observed
rst_obs <- get_observed(dta_psbor$data, v_outcome)
## call estimation
f_get_ps_cl_km_watt <- switch(stderr_method[1],
jk = get_ps_cl_km_watt,
sjk = get_ps_cl_km_watt_sjk,
cjk = get_ps_cl_km_watt_cjk,
sbs = get_ps_cl_km_watt_sbs,
cbs = get_ps_cl_km_watt_cbs,
none = get_ps_cl_km_watt_none)
rst <- f_get_ps_cl_km_watt(dta_psbor, v_outcome = v_outcome,
outcome_type = outcome_type,
f_stratum = get_cl_stratum_watt,
...)
## return
rst$Observed <- rst_obs
rst$stderr_method <- stderr_method
rst$Method <- "ps_cl"
rst$Method_weight <- "WATT"
rst$Outcome_type <- outcome_type
class(rst) <- get_rwe_class("ANARST")
rst
}
#' Composite Likelihood Estimation (WATT)
#'
#' Estimate parameter of interest based composite likelihood for a single PS
#' stratum with weights of ATT (WATT).
#'
#' @inheritParams psrwe_powerp
#'
#' @param dta_cur Vector of outcome from a PS stratum in current study
#' @param dta_ext Vector of outcome from a PS stratum in external data source
#' @param n_borrow Number of subjects to be borrowed
#' @param dta_ext_watt_di Weights of ATT for subjects in external data source
#' @param equal_sd Boolean. whether sd is the same between the current study and
#' external data source
#'
#' @return Maximum composite likelihood estimator of the mean
#'
#' @examples
#' x <- rnorm(100, mean = 0, sd = 1)
#' y <- rnorm(1000, mean = 1, sd = 2)
#' rwe_cl_watt(x, y, n_borrow = 20, equal_sd = FALSE)
#'
#' @export
#'
rwe_cl_watt <- function(dta_cur, dta_ext, n_borrow = 0,
dta_ext_watt_di = NULL,
outcome_type = c("continuous", "binary"),
equal_sd = TRUE) {
f_ll <- function(pars) {
theta <- pars[1]
sig2_1 <- pars[2]
sig2_0 <- pars[3]
ll <- - n1 * log(sig2_1) / 2
ll <- ll - n1 * mean((dta_cur - theta)^2) / 2 / sig2_1
ll <- ll - n_borrow * log(sig2_0) / 2
# ll <- ll - n_borrow * mean((dta_ext - theta)^2) / 2 / sig2_0
ll <- ll - n_borrow * sum((dta_ext - theta)^2 * dta_ex_watt_di) / 2 / sig2_0
ll
}
f_gradient <- function(pars) {
theta <- pars[1]
sig2_1 <- pars[2]
sig2_0 <- pars[3]
g <- numeric(length(pars))
## d logl / d theta
g[1] <- n1 / sig2_1 * (mean(dta_cur) - theta) +
n_borrow / sig2_0 * (mean(dta_ext) - theta)
## d logl / d sig2.1
g[2] <- - n1 / 2 / sig2_1 +
n1 * mean((dta_cur - theta)^2) / 2 / sig2_1 / sig2_1
## d logl / d sig2.0
g[3] <- - n_borrow / 2 / sig2_0 +
n_borrow * mean((dta_cur - theta)^2) / 2 / sig2_0 / sig2_0
return(g)
}
type <- match.arg(outcome_type)
n1 <- length(dta_cur)
## ignore external data
if (0 == n_borrow) {
## placeholder
dta_ext <- dta_cur
equal_sd <- TRUE
}
# init_theta <- (n1 / (n1 + n_borrow)) * mean(dta_cur) +
# (n_borrow / (n1 + n_borrow)) * mean(dta_ext)
if (is.null(dta_ext_watt_di)) {
dta_ext_watt_di <- rep(1 / length(dta_ext), length(dta_ext))
}
init_theta <- (n1 / (n1 + n_borrow)) * mean(dta_cur) +
(n_borrow / (n1 + n_borrow)) * sum(dta_ext * dta_ext_watt_di)
if (("continuous" == type & equal_sd) |
"binary" == type) {
rst <- init_theta
} else {
init_sig2_1 <- mean((dta_cur - init_theta)^2)
init_sig2_0 <- mean((dta_ext - init_theta)^2)
rst <- optim(c(init_theta, init_sig2_1, init_sig2_0),
method = "L-BFGS-B",
fn = f_ll,
lower = c(-Inf, 1e-6, 1e-6),
upper = rep(Inf, 3),
control = list(fnscale = -1))$par[1];
}
rst
}
#' Get CL estimation for each stratum (WATT)
#'
#'
#' @noRd
#'
get_cl_stratum_watt <- function(d1, d0 = NULL, n_borrow = 0, outcome_type,
stderr_method = "jk",
d0_watt_di = NULL,
...) {
## treatment or control only
dta_cur <- d1
ns1 <- length(dta_cur)
if (0 == n_borrow | is.null(d0)) {
theta <- mean(dta_cur)
stderr_theta <- switch(outcome_type,
continuous = sd(dta_cur) / sqrt(ns1),
binary = sqrt(theta * (1 - theta) / ns1))
return(c(theta, stderr_theta))
}
## overall ps-cl
dta_ext <- d0
ns0 <- length(dta_ext)
dta_ext_watt_di <- d0_watt_di
## overall estimate
overall_theta <- rwe_cl_watt(dta_cur, dta_ext, n_borrow = n_borrow,
dta_ext_watt_di = dta_ext_watt_di,
...)
## jackknife stderr
if (stderr_method == "jk") {
jk_theta <- NULL
for (j in seq_len(ns1)) {
cur_jk <- rwe_cl_watt(dta_cur[-j], dta_ext, n_borrow = n_borrow,
dta_ext_watt_di = dta_ext_watt_di,
...)
jk_theta <- c(jk_theta, cur_jk)
}
if (ns0 > 0) {
for (j in seq_len(ns0)) {
cur_jk <- rwe_cl_watt(dta_cur, dta_ext[-j], n_borrow = n_borrow,
dta_ext_watt_di = dta_ext_watt_di[-j],
...)
jk_theta <- c(jk_theta, cur_jk)
}
}
stderr_theta <- get_jk_sd(overall_theta, jk_theta)
} else {
stderr_theta <- NA
}
## summary
return(c(overall_theta, stderr_theta))
}
#' Get estimates for composite likelihood and survival (WATT)
#'
#'
#'
#' @noRd
#'
get_ps_cl_km_watt <- function(dta_psbor,
v_outcome = NULL,
v_event = NULL,
v_time = NULL,
f_stratum = get_cl_stratum_watt,
f_overall_est = get_overall_est,
...) {
## prepare data
is_rct <- dta_psbor$is_rct
data <- dta_psbor$data
data <- data[!is.na(data[["_strata_"]]), ]
strata <- levels(data[["_strata_"]])
nstrata <- length(strata)
borrow <- dta_psbor$Borrow$N_Borrow
## estimate
ctl_theta <- NULL
trt_theta <- NULL
for (i in seq_len(nstrata)) {
cur_01 <- get_cur_d(data,
strata[i],
c(v_outcome, v_time, v_event))
cur_d1 <- cur_01$cur_d1
cur_d0 <- cur_01$cur_d0
cur_d1t <- cur_01$cur_d1t
cur_01_e <- get_cur_d(data, strata[i], "_ps_")
cur_d0_e <- cur_01_e$cur_d0
cur_d0_watt <- cur_d0_e / (1 - cur_d0_e)
cur_d0_watt_di <- cur_d0_watt / sum(cur_d0_watt)
## control with borrowing
cur_ctl <- f_stratum(cur_d1, cur_d0, n_borrow = borrow[i],
d0_watt_di = cur_d0_watt_di,
...)
ctl_theta <- rbind(ctl_theta, cur_ctl)
if (is_rct) {
cur_trt <- f_stratum(cur_d1t, ...)
trt_theta <- rbind(trt_theta, cur_trt)
}
}
## summary
rst_trt <- NULL
rst_effect <- NULL
if (is_rct) {
rst_trt <- f_overall_est(trt_theta, dta_psbor$Borrow$N_Cur_TRT)
rst_effect <- f_overall_est(trt_theta, dta_psbor$Borrow$N_Current,
ctl_theta)
n_ctl <- dta_psbor$Borrow$N_Cur_CTL
} else {
n_ctl <- dta_psbor$Borrow$N_Current
}
rst_ctl <- f_overall_est(ctl_theta, n_ctl)
## return
rst <- list(Control = rst_ctl,
Treatment = rst_trt,
Effect = rst_effect,
Borrow = dta_psbor$Borrow,
Total_borrow = dta_psbor$Total_borrow,
is_rct = is_rct)
return(rst)
}
#' Get estimates for composite likelihood and survival (WATT) skip stderr
#'
#'
#'
#' @noRd
#'
get_ps_cl_km_watt_none <- function(dta_psbor,
v_outcome = NULL,
v_event = NULL,
v_time = NULL,
f_stratum = get_cl_stratum_watt,
f_overall_est = get_overall_est,
...) {
get_ps_cl_km_watt(dta_psbor,
v_outcome = v_outcome,
v_event = v_event,
v_timet = v_time,
v_stratum = v_stragum,
f_overall_est = f_overall_est,
stderr_method = "none",
...)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.