Description Usage Arguments Value Examples
Sample values from the existing conditional density fit for given new data
1 | sample_value(model_fit, newdata)
|
model_fit |
An R6 object of class |
newdata |
A |
A numeric vector containing the sampled predictions for new observation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | library("simcausal")
D <- DAG.empty()
D <-
D + node("W1", distr = "rbern", prob = 0.5) +
node("W2", distr = "rbern", prob = 0.3) +
node("W3", distr = "rbern", prob = 0.3) +
node("sA.mu", distr = "rconst", const = (0.98 * W1 + 0.58 * W2 + 0.33 * W3)) +
node("sA", distr = "rnorm", mean = sA.mu, sd = 1)
D <- set.DAG(D, n.test = 10)
datO <- sim(D, n = 10000, rndseed = 12345)
## Fit conditional density using equal mass bins (same number of obs per bin):
dens_fit <- fit_density(
X = c("W1", "W2", "W3"),
Y = "sA",
input_data = datO,
nbins = 20,
bin_method = "equal.mass",
bin_estimator = speedglmR6$new())
## Wrapper function to predict the conditional probability (likelihood)
## for new observations:
newdata <- datO[1:5, c("W1", "W2", "W3", "sA"), with = FALSE]
preds <- predict_probability(dens_fit, newdata)
## Wrapper function to sample the values from the conditional density fit:
sampledY <- sample_value(dens_fit, newdata)
## Fit conditional density using equal length bins
## (divides the range of support of the outcome to define each bin):
dens_fit <- fit_density(
X = c("W1", "W2", "W3"),
Y = "sA",
input_data = datO,
nbins = 20,
bin_method = "equal.len",
bin_estimator = speedglmR6$new())
## Wrapper function to predict the conditional probability (likelihood)
## for new observations:
newdata <- datO[1:5, c("W1", "W2", "W3", "sA"), with = FALSE]
preds <- predict_probability(dens_fit, newdata)
## Wrapper function to sample the values from the conditional density fit:
sampledY <- sample_value(dens_fit, newdata)
## Fit conditional density using custom bin definitions (argument intrvls):
dens_fit <- fit_density(
X = c("W1", "W2", "W3"),
Y = "sA",
input_data = datO,
bin_estimator = speedglmR6$new(),
nbins = 5,
intrvls = list(sA = seq(-4,4, by = 0.1)))
## Fit conditional density using custom bin definitions and
## pool all bin indicators into a single long-format dataset.
## The pooling results in a single regression that is fit for all bin hazards,
## with a bin indicator added as an additional covariate.
dens_fit <- fit_density(
X = c("W1", "W2", "W3"),
Y = "sA",
input_data = datO,
bin_estimator = speedglmR6$new(),
intrvls = list(sA = seq(-4,4, by = 0.1)),
nbins = 5,
pool = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.