#' Train KBMTL classification model generic
#'
#' @param Xtrain (matrix): training data. Featrues are columns and samples are rows
#' @param Ytrain (matrix): response
#' @return smmart_trained_machine_learning_model.RData
#' @export
#' @example
#'
train_classification <- function(Xtrain, Ytrain) {
#parse optional arguments
K_train <- X_train %*% t(X_train)
normalizer <- max(abs(K_train))
K_train <- K_train / normalizer
parameters <- list()
parameters$alpha_lambda <- 1
parameters$beta_lambda <- 1
parameters$iteration <- 200
parameters$margin <- 1
parameters$R <- 20
parameters$seed <- 1606
parameters$sigma_h <- 0.1
parameters$sigma_w <- 1.0
state <- kbmtl_semisupervised_classification_variational_train(K_train, Y_train, parameters)
save(state, file = "smmart_trained_machine_learning_model.RData")
print(paste0("kbmtl trained model saved ", getwd(), "/smmart_trained_machine_learning_model.RData"))
return(state)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.