#' @title Creates a \code{blocks} argument
#' @description This helper function generates a list of the type needed for
#' \code{blocks} argument in the mice function.
#' @param data A \code{data.frame}, character vector with
#' variable names, or \code{list} with variable names.
#' @param partition A character vector of length 1 used to assign
#' variables to blocks when \code{data} is a \code{data.frame}. Value
#' \code{"scatter"} (default) will assign each column to it own
#' block. Value \code{"collect"} assigns all variables to one block,
#' whereas \code{"void"} produces an empty list.
#' @param calltype A character vector of \code{length(block)} elements
#' that indicates how the imputation model is specified. If
#' \code{calltype = "type"} (the default), the underlying imputation
#' model is called by means of the \code{type} argument. The
#' \code{type} argument for block \code{h} is equivalent to
#' row \code{h} in the \code{predictorMatrix}.
#' The alternative is \code{calltype = "formula"}. This will pass
#' \code{formulas[[h]]} to the underlying imputation
#' function for block \code{h}, together with the current data.
#' The \code{calltype} of a block is set automatically during
#' initialization. Where a choice is possible, calltype
#' \code{"formula"} is preferred over \code{"type"} since this is
#' more flexible and extendable. However, what precisely happens
#' depends also on the capabilities of the imputation
#' function that is called.
#' @return A named list of character vectors with variables names.
#' @details Choices \code{"scatter"} and \code{"collect"} represent to two
#' extreme scenarios for assigning variables to imputation blocks.
#' Use \code{"scatter"} to create an imputation model based on
#' \emph{fully conditionally specification} (FCS). Use \code{"collect"} to
#' gather all variables to be imputed by a \emph{joint model} (JM).
#' Scenario's in-between these two extremes represent
#' \emph{hybrid} imputation models that combine FCS and JM.
#'
#' Any variable not listed in will not be imputed.
#' Specification \code{"void"} represents the extreme scenario that
#' skips imputation of all variables.
#'
#' A variable may be a member of multiple blocks. The variable will be
#' re-imputed in each block, so the final imputations for variable
#' will come from the last block that was executed. This scenario
#' may be useful where the same complete background factors appear in
#' multiple imputation blocks.
#'
#' A variable may appear multiple times within a given block. If a univariate
#' imputation model is applied to such a block, then the variable is
#' re-imputed each time as it appears in the block.
#' @examples
#' make.blocks(nhanes)
#' make.blocks(c("age", "sex", "edu"))
#' @export
make.blocksDS <- function(data,
partition = c("scatter", "collect", "void"),
calltype = "type") {
if (is.vector(data) && !is.list(data)) {
v <- as.list(as.character(data))
names(v) <- as.character(data)
ct <- rep(calltype, length(v))
names(ct) <- names(v)
attr(v, "calltype") <- ct
return(v)
}
if (is.list(data) && !is.data.frame(data)) {
v <- name.blocks(data)
if (length(calltype) == 1L) {
ct <- rep(calltype, length(v))
names(ct) <- names(v)
attr(v, "calltype") <- ct
}
else {
ct <- calltype
names(ct) <- names(v)
attr(v, "calltype") <- ct
}
return(v)
}
data <- as.data.frame(data)
partition <- match.arg(partition)
switch(partition,
scatter = {
v <- as.list(names(data))
names(v) <- names(data)
},
collect = {
v <- list(names(data))
names(v) <- "collect"
},
void = {
v <- list()
},
{
v <- as.list(names(data))
names(v) <- names(data)
})
if (length(calltype) == 1L) {
ct <- rep(calltype, length(v))
names(ct) <- names(v)
attr(v, "calltype") <- ct
}
else {
ct <- calltype
names(ct) <- names(v)
attr(v, "calltype") <- ct
}
return(v)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.