#' Model-based analysis for continuous data using discontinuous piecewise polynomials per period
#'
#' @description This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time using discontinuous piecewise polynomials in each period.
#'
#' @param data Data frame with trial data, e.g. result from the `datasim_cont()` function. Must contain columns named 'treatment', 'response', 'period' and 'j'.
#' @param arm Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
#' @param alpha Double. Significance level (one-sided). Default=0.025.
#' @param ncc Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
#' @param poly_degree Integer. Degree of the piecewise polynomial. Default=3.
#' @param check Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
#' @param ... Further arguments passed by wrapper functions when running simulations.
#'
#' @importFrom stats lm
#' @importFrom splines bs
#' @importFrom stats pt
#' @importFrom stats coef
#' @importFrom stats confint
#'
#' @export
#'
#' @examples
#'
#' trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
#' theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
#'
#' piecewise_cont(data = trial_data, arm = 3)
#'
#' @return List containing the following elements regarding the results of comparing `arm` to control:
#'
#' - `p-val` - p-value (one-sided)
#' - `treat_effect` - estimated treatment effect in terms of the difference in means
#' - `lower_ci` - lower limit of the (1-2*`alpha`)*100% confidence interval
#' - `upper_ci` - upper limit of the (1-2*`alpha`)*100% confidence interval
#' - `reject_h0` - indicator of whether the null hypothesis was rejected or not (`p_val` < `alpha`)
#' - `model` - fitted model
#'
#' @author Pavla Krotka
piecewise_cont <- function(data, arm, alpha=0.025, ncc=TRUE, poly_degree=3, check=TRUE, ...){
if (check) {
if (!is.data.frame(data) | sum(c("treatment", "response", "period", "j") %in% colnames(data))!=4) {
stop("The data frame with trial data must contain the columns 'treatment', 'response', 'period' and 'j'!")
}
if(!is.numeric(arm) | length(arm)!=1){
stop("The evaluated treatment arm (`arm`) must be one number!")
}
if(!is.numeric(alpha) | length(alpha)!=1 | alpha>=1 | alpha<=0){
stop("The significance level (`alpha`) must be one number between 0 and 1!")
}
if(!is.logical(ncc) | length(ncc)!=1){
stop("The indicator of including NCC data to the analysis (`ncc`) must be TRUE or FALSE!")
}
if(!is.numeric(poly_degree) | length(poly_degree)!=1){
stop("Degree of the piecewise polynomial (`poly_degree`) must be one number!")
}
}
min_period <- min(data[data$treatment==arm,]$period)
max_period <- max(data[data$treatment==arm,]$period)
if (ncc) {
data_new <- data[data$period %in% c(1:max_period),]
} else {
data_new <- data[data$period %in% c(min_period:max_period),]
}
# fit linear model
if(length(unique(data_new$period))==1){ # if only one period in the data, don't use any knots, just ordinary polynomial regression
mod <- lm(response ~ as.factor(treatment) + poly(j, degree = poly_degree, raw = TRUE), data_new)
} else {
mod <- lm(response ~ as.factor(treatment) + poly(j, degree = poly_degree, raw = TRUE)*as.factor(period), data_new)
}
res <- summary(mod)
# one-sided p-value
p_val <- pt(coef(res)[paste0("as.factor(treatment)", arm), "t value"], mod$df, lower.tail = FALSE)
# metrics
treat_effect <- res$coefficients[paste0("as.factor(treatment)", arm), "Estimate"]
lower_ci <- confint(mod, level = 1-(2*alpha))[paste0("as.factor(treatment)", arm), 1]
upper_ci <- confint(mod, level = 1-(2*alpha))[paste0("as.factor(treatment)", arm), 2]
reject_h0 <- (p_val < alpha)
return(list(p_val = p_val,
treat_effect = treat_effect,
lower_ci = lower_ci,
upper_ci = upper_ci,
reject_h0 = reject_h0,
model = mod))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.