Description Usage Arguments Value References Examples
View source: R/Derive_network.R
This function computes permutation-based FDR of importance scores and returns gene-gene interactions.
1 | Derive_network(out.iJRFNet,out.perm,TH)
|
out.iJRFNet |
Output from object of class |
out.perm |
Output from object of class |
TH |
Threshold for FDR. |
List of estimated interactions.
Petralia, F., Song, W.M., Tu, Z. and Wang, P. (2016). New method for joint network analysis reveals common and different coexpression patterns among genes and proteins in breast cancer. Journal of proteome research, 15(3), pp.743-754.
A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2, 18–22.
Xie, Y., Pan, W. and Khodursky, A.B., 2005. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics, 21(23), pp.4280-4288.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # --- Generate data sets
nclasses=2 # number of data sets / classes
n1<-n2<-20 # sample size for each data set
p<-5 # number of variables (genes/proteins)
genes.name<-paste("G",seq(1,p),sep="") # genes name
data1<-matrix(rnorm(p*n1),p,n1) # generate data1
data2<-matrix(rnorm(p*n2),p,n1) # generate data2
# --- Run iJRFNet and obtain importance score of interactions
out.iJRFNet<-iJRFNet(X=list(data1,data2),genes.name=genes.name,model="iJRF")
# --- Obtain importance scores for M permuted data sets
out.perm<-iJRFNet_permutation(X=list(data1,data2), ntree=1000,mtry=sqrt(5),
genes.name=genes.name,M=5,model="iJRF")
# --- Derive final networks
final.net<-Derive_network(out.iJRFNet,out.perm,0.001)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.