Description Usage Arguments Value References Examples
This function returns the list of modules.
1 | Plot_Modules(net.final,genes.name)
|
net.final |
Network to plot. |
genes.name |
A vector containing gene names. |
Return list of modules.
Petralia, F., Song, W.M., Tu, Z. and Wang, P. (2016). New method for joint network analysis reveals common and different coexpression patterns among genes and proteins in breast cancer. Journal of proteome research, 15(3), pp.743-754.
A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2, 18–22.
Xie, Y., Pan, W. and Khodursky, A.B., 2005. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics, 21(23), pp.4280-4288.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # --- Generate data sets
nclasses=2 # number of data sets / classes
n1<-n2<-20 # sample size for each data sets
p<-40 # number of variables (genes/proteins)
genes.name<-paste("G",seq(1,p),sep="") # genes/proteins name
data1<-matrix(rnorm(p*n1),p,n1) # generate data1
data2<-matrix(rnorm(p*n2),p,n1) # generate data2
# --- Run iJRF and obtain importance score of interactions
out.iJRFNet<-iJRFNet(X=list(data1,data2),genes.name=genes.name,
model="iJRF")
# --- Degree plot
final.net<-Plot_Modules(out.iJRFNet[sample(dim(out.iJRFNet)[1],200),c(1,2)]
,genes.name=genes.name)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.