particle_filter_given_uresampling <- function(nparticles, model, theta, observations, randomness, u_resampling){
uniforms <- pnorm(u_resampling)
datalength <- nrow(observations)
# initialization
xparticles <- model$rinit(nparticles, theta, randomness)
normweights <- rep(1/nparticles, nparticles)
ll <- 0
# step t > 1
for (time in 1:datalength){
horder <- hilbert_order(xparticles)
nw_sorted <- normweights[horder]
ancestors <- systematic_resampling_n(nw_sorted, nparticles, uniforms[time])
ancestors <- horder[ancestors]
#
xparticles <- matrix(xparticles[,ancestors], nrow = model$dimension)
xparticles <- model$rtransition(xparticles, theta, time, randomness)
logw <- model$dmeasurement(xparticles, theta, observations[time,])
maxlw <- max(logw)
w <- exp(logw - maxlw)
# update log likelihood estimate
ll <- ll + maxlw + log(mean(w))
normweights <- w / sum(w)
#
}
return(ll)
}
#'@export
hilbert_pmmh <- function(pmmh_parameters, model, theta_init, observations){
current_theta <- theta_init
theta_dim <- length(theta_init)
nparticles <- pmmh_parameters$nparticles
mcmciterations <- pmmh_parameters$mcmciterations
proposal_covariance <- pmmh_parameters$proposal_covariance
rho_perturb <- pmmh_parameters$rho_perturb
v_perturb <- sqrt(1 - rho_perturb^2)
datalength <- nrow(observations)
current_u_resampling <- rnorm(datalength)
#
current_randomness <- model$generate_randomness(nparticles = nparticles, datalength = datalength)
current_ll <- particle_filter_given_uresampling(nparticles, model, current_theta, observations,
current_randomness, current_u_resampling)
current_posterior <- current_ll + model$dprior(current_theta)
pmmh_naccepts <- 0
pmmh_chain <- matrix(nrow = mcmciterations, ncol = theta_dim)
pmmh_chain[1,] <- current_theta
loglikelihoods <- rep(0, mcmciterations)
loglikelihoods[1] <- current_ll
for (iteration in 2:mcmciterations){
if (iteration %% 100 == 1){
cat("iteration: ", iteration, " / ", mcmciterations, "\n")
cat("acceptance rate: ", pmmh_naccepts / iteration * 100, "%\n")
}
proposal <- current_theta + fast_rmvnorm(1, rep(0, theta_dim), proposal_covariance)[1,]
proposal_prior <- model$dprior(proposal)
if (!is.infinite(proposal_prior)){
proposal_randomness <- model$perturb_randomness(current_randomness, rho_perturb)
# proposal_u_resampling <- rho_perturb * current_u_resampling + v_perturb * rnorm(datalength)
proposal_u_resampling <- rnorm(datalength)
proposal_ll <- try(particle_filter_given_uresampling(nparticles, model, proposal, observations,
proposal_randomness, proposal_u_resampling))
if (inherits(proposal_ll, "try-error")){
proposal_ll <- -Inf
} else {
if (is.na(proposal_ll)){
proposal_ll <- -Inf
}
}
proposal_posterior <- proposal_ll + proposal_prior
if (log(runif(1)) < (proposal_posterior - current_posterior)){
current_theta <- proposal
current_ll <- proposal_ll
current_posterior <- proposal_posterior
current_randomness <- proposal_randomness
current_u_resampling <- proposal_u_resampling
pmmh_naccepts <- pmmh_naccepts + 1
}
}
pmmh_chain[iteration,] <- current_theta
loglikelihoods[iteration] <- current_ll
}
return(list(chain = pmmh_chain, acceptance_rate = pmmh_naccepts / mcmciterations,
loglikelihoods = loglikelihoods))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.