#' Calculate historical distribution of livestock production across
#' different systems based on output of MAgPIE_FEED model
#'
#' @return Historical distribution of livestock production across
#' different systems and corresponding weights as a list of two MAgPIE objects
#' @author Isabelle Weindl
#' @seealso [calcOutput()], [readFeedModel()]
#' @examples
#' \dontrun{
#' calcOutput("ProdSysRatioPast")
#' }
#' @importFrom magclass getNames
#' @importFrom luscale rename_dimnames
calcProdSysRatioPast <- function() {
past <- findset("past")
# read in data
prodsysratio <- readSource(type = "FeedModel", subtype = "ProdSysRatio")
# use livestock production as weight
kli <- findset("kli")
massbalance <- calcOutput("FAOmassbalance_pre", aggregate = FALSE)[, past, ]
weight <- collapseNames(massbalance[, , kli][, , "dm"][, , "production"])
mapping <- data.frame(
kli = c("livst_pig", "livst_rum", "livst_chick", "livst_egg", "livst_milk"),
sys = c("sys_pig", "sys_beef", "sys_chicken", "sys_hen", "sys_dairy"),
stringsAsFactors = FALSE)
weight <- rename_dimnames(weight, dim = 3, query = mapping, from = "kli", to = "sys")
# remove datasets with NAs in weight/data
prodsysratio <- toolNAreplace(x = prodsysratio, weight = weight, replaceby = 0)
weight <- prodsysratio$weight
out <- prodsysratio$x
return(list(x = out, weight = weight,
unit = "-",
description = "Detailed historical system-specific feed requirements in
DM per DM products generated for 5 livestock commodities."))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.