#' Convert EDGE Buildings data to data on ISO country level.
#'
#' @param subtype either FE or Floorspace
#' @param subset A string (or vector of strings) designating the scenario(s) to be returned.
#' @param x MAgPIE object containing EDGE values at ISO country resolution
#' @return EDGE data as MAgPIE object aggregated to country level
#' @author Antoine Levesque, Robin Hasse
#'
convertEdgeBuildings <- function(x, subtype, subset) {
.renameExtraWeights <- function(magObj, magWeight, mapping) {
do.call("mbind", lapply(mapping[["EDGEitems"]], function(itemIN) {
if (itemIN %in% getNames(magObj, dim = "item")) {
item_weight <- mapping[mapping$EDGEitems == itemIN, "weight_convertEDGE"]
subMagpie <- magWeight[, , item_weight]
res <- setNames(subMagpie, gsub(item_weight, itemIN, getNames(subMagpie)))
} else {
res <- NULL
}
return(res)
}))
}
.calcLambda <- function(exceedingYearsVec, threshold, previousYears = NULL) {
exceedingYearsBefore <- exceedingYearsVec[exceedingYearsVec <= threshold]
exceedingYearsAfter <- exceedingYearsVec[exceedingYearsVec > threshold]
lambda <- c(rep(0, length(previousYears)),
utils::tail(seq(0, 1, length.out = length(exceedingYearsBefore) + 1), -1),
rep(1, length(exceedingYearsAfter)))
names(lambda) <- as.character(c(previousYears, exceedingYearsVec))
return(as.magpie(lambda))
}
#---- Parameters and Mappings ------
rem_years_hist <- seq(1990, 2150, 5)
struct_mapping_path <- toolGetMapping(type = "sectoral", name = "structuremappingIO_outputs.csv",
returnPathOnly = TRUE, where = "mrcommons")
struct_mapping <- utils::read.csv2(struct_mapping_path, na.strings = "")
# Select the relevant part of the mapping
struct_mapping <- struct_mapping[!is.na(struct_mapping$weight_convertEDGE), ]
struct_mapping <- unique(struct_mapping[c("weight_convertEDGE", "EDGEitems")])
# Create data for any missing scenarios (i.e. not in x) by duplication of the SSP2 data.
xAdd <- purrr::map(subset[!subset %in% getNames(x, dim = "scenario")], function(scen) {
message(glue::glue("Adding {scen} stationary data as copy of SSP2."))
setItems(x[, , "SSP2"], 3.1, scen)
}) %>%
mbind()
# Select scenarios
x <- mbind(x, xAdd) %>% mselect(scenario = subset)
if (subtype == "FE") {
#---- Explanations
# For the historical data, weights are directly taken from the IEA
# to ensure the consistency at the country level
# for the future evolution, weights depend on last final energy data point available
# multiplied by the growth rate of the country
# Load the regional mapping which depends upon the model used
mappingfile <- toolGetMapping(type = "regional",
name = "regionmappingEDGE.csv",
returnPathOnly = TRUE,
where = "mappingfolder")
mapping <- utils::read.csv2(mappingfile)
region_col <- which(names(mapping) == "RegionCodeEUR_ETP")
iso_col <- which(names(mapping) == "CountryCode")
#--- Load the Weights
## First load the GDP data for scenarios for which there exist GDP data.
## Set average2020 to False to get yearly data as far as possible.
gdpScen <- subset[subset %in% mrdrivers::toolGetScenarioDefinition(driver = "GDP", aslist = TRUE)$scenario]
wg <- calcOutput("GDP", scenario = unique(c("SSP2", gdpScen)), average2020 = FALSE, aggregate = FALSE)
## For scenarios for which no specific GDP data exists, use SSP2 data.
wgAdd <- purrr::map(subset[!subset %in% gdpScen], ~setItems(wg[, , "SSP2"], 3, .x)) %>% mbind()
wg <- mbind(wg, wgAdd) %>% mselect(variable = subset)
#--- Then load the final energy data
hist_fe_stationary <- calcOutput("IOEdgeBuildings", subtype = "output_EDGE", aggregate = FALSE)
hist_fe_buildings <- calcOutput("IOEdgeBuildings", subtype = "output_EDGE_buildings", aggregate = FALSE)
wfe <- mbind(hist_fe_stationary, hist_fe_buildings)
if (any(wfe < 0)) {
warning("calcOutput('IOEdgeBuildings', subtype = X), with X in (output_EDGE, output_EDGE_buildings) produces negative values, set to 0") # nolint
wfe[wfe < 0] <- 0
}
#---- Process Data -----------------
# Replace NAs
x[is.na(x)] <- 0
# Select last year of X available in the historical data set
maxYear_X_in_FE <- max(getYears(x, as.integer = TRUE)[getYears(x, as.integer = TRUE) %in%
getYears(wfe, as.integer = TRUE)])
# Deduce the scenario periods
exceeding_years <- getYears(x, as.integer = TRUE)[getYears(x, as.integer = TRUE) > maxYear_X_in_FE]
# Scale GDP and FE weights so that they can be added
wg <- wg / dimSums(wg, dim = 1, na.rm = TRUE)
wfe <- wfe / dimSums(wfe, dim = 1, na.rm = TRUE)
# Add the scenario dimension
wfe <- purrr::map(getNames(x, dim = "scenario"), ~setNames(wfe, paste(.x, getNames(wfe), sep = "."))) %>%
mbind()
# Compute lambda
lambda <- .calcLambda(exceeding_years, 2060)
# For the future periods, the weight will be a linear combination of last FE weight and of the GDP size.
# until maxYear_X_in_FE this will be exclusively FE,
# in 2060 (depending on the threshold value above), exclusively GDP
wfe <- mbind(wfe,
lambda[, exceeding_years, ] * wg[, exceeding_years, ] +
(1 - lambda[, exceeding_years, ]) * (setYears(wfe[, maxYear_X_in_FE, ], NULL))
)
# In cases where the variables in EDGE do not exist in the mapping for computing the final energy,
# e.g. when EDGE produces further disaggregations, or when it gives REMIND items without computing them
wfe <- mbind(wfe, .renameExtraWeights(x, wfe, struct_mapping))
# Reduce the dimensions of the weights
wfe <- wfe[, getYears(x), getNames(x, dim = "item")]
# Disaggregate and fill the gaps
weightSum <- toolAggregate(wfe, mappingfile, from = region_col, to = iso_col, dim = 1)
# only throw the zeroWeight warning in toolAggregate, when any weights are zero,
# but the corresponding data in x is not 0, as only in these cases the total sum of
# the magpie object is actually changed
shouldWarn <- ifelse(any(weightSum[x != 0] == 0), "warn", "allow")
xadd <- toolAggregate(x, mappingfile, weight = wfe, from = region_col, to = iso_col,
zeroWeight = shouldWarn)
result <- toolCountryFill(xadd, 0, verbosity = 2)
# Attribute the growth in water heating demand of the EDGE Region OCD to TUR,
# and retrieve it from AUS, CAN, CHE (Swiss), NOR, NZL
# For SSP1, SSP2 and SDP
names_2_change <- grep("(SSP1|SSP2|SDP|SDP_EI|SDP_RC|SDP_MC).*water_heating", getNames(result), value = TRUE)
names_2_change_elec <- grep("elec", names_2_change, value = TRUE)
regs_OCD <- c("AUS", "CAN", "CHE", "NOR", "NZL")
reg_TUR <- "TUR"
end_of_history <- 2015
scenario_time <- getYears(result, TRUE)[getYears(result, TRUE) > end_of_history]
WH_growth <- result[regs_OCD, scenario_time, names_2_change] -
dimReduce(result[regs_OCD, end_of_history, names_2_change])
WH_growth[, , names_2_change_elec] <- WH_growth[, , names_2_change_elec] * 0.5
WH_growth[WH_growth < 0] <- 0
WH_growth_agg <- dimSums(WH_growth, dim = 1)
result[getRegions(WH_growth), getYears(WH_growth), getNames(WH_growth)] <-
result[getRegions(WH_growth), getYears(WH_growth), getNames(WH_growth)] - WH_growth
result[reg_TUR, getYears(WH_growth), getNames(WH_growth)] <-
result[reg_TUR, getYears(WH_growth), getNames(WH_growth)] + WH_growth_agg
}
if (subtype == "Floorspace") {
mappingfile <- toolGetMapping(type = "regional",
name = "regionmappingEDGE.csv",
returnPathOnly = TRUE,
where = "mappingfolder")
mapping <- utils::read.csv2(mappingfile)
region_col <- which(names(mapping) == "RegionCodeEUR_ETP")
iso_col <- which(names(mapping) == "CountryCode")
popScen <- subset[subset %in% mrdrivers::toolGetScenarioDefinition(driver = "Population", aslist = TRUE)$scenario]
wp <- calcOutput("Population",
scenario = unique(c("SSP2", popScen)),
years = rem_years_hist,
aggregate = FALSE)
## For scenarios for which no specific Population data exists, use SSP2 data.
wpAdd <- purrr::map(subset[!subset %in% popScen], ~setItems(wp[, , "SSP2"], 3, .x)) %>% mbind()
wp <- mbind(wp, wpAdd) %>% mselect(variable = subset)
getSets(wp) <- gsub("variable", "scenario", getSets(wp))
x <- time_interpolate(x, interpolated_year = rem_years_hist, extrapolation_type = "constant")
x <- toolAggregate(x[, rem_years_hist, ], mappingfile, weight = wp,
from = region_col, to = iso_col)
result <- x
}
result
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.