View source: R/compare_models.R
compare_models | R Documentation |
Evaluate outputs from models implemented using a (1) rjMCMC and (2) Gibbs Variable Selection approach. Returns comparative plots of posterior model rankings and posterior parameter estimates.
compare_models(
rj.dat = NULL,
gvs.fixed = NULL,
gvs.random = NULL,
by.model = FALSE,
kernel.adj = 2,
viridis.col = FALSE,
density = TRUE,
prob = TRUE
)
rj.dat |
Input rjMCMC object, as returned by |
gvs.fixed |
Input Gibbs object, as returned by |
gvs.random |
Input Gibbs object, as returned by |
by.model |
Logical. If |
kernel.adj |
Bandwidth adjustment. The bandwidth used to create density plots is given by |
viridis.col |
Logical. Whether to use a viridis colour scheme. |
density |
Logical. If |
prob |
Logical. If |
Phil J. Bouchet
simulate_data
example_brs
summary.rjdata
## Not run:
library(espresso)
# Simulate data for two species
mydat <- simulate_data(n.species = 2,
n.whales = 16,
max.trials = 3,
covariates = list(exposed = c(0, 5), range = 0.5),
mu = c(101, 158),
phi = 20,
sigma = 20,
Rc = c(210, 211),
seed = 58697)
summary(mydat)
# Model selection by GVS
gvs <- gibbs(dat = mydat,
random.effects = FALSE,
include.covariates = FALSE,
mcmc.n = 1000,
burnin = 500)
# Run the reversible jump MCMC
rj <- run_rjMCMC(dat = mydat.config,
n.chains = 2,
n.burn = 100,
n.iter = 100,
do.update = FALSE)
# Burn and thin
rj.trace <- trace_rjMCMC(rj.dat = rj)
# Compare outputs
compare_models(rj.dat = rj.trace, gvs.fixed = gvs)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.