View source: R/update_rjMCMC.R
update_rjMCMC | R Documentation |
Update the Markov chain(s) associated with an existing rjMCMC sampler.
update_rjMCMC(rjdat, n.iter = 1000)
rjdat |
Input rjMCMC sampler. Must be an object of class |
n.iter |
Number of posterior samples. |
Phil J. Bouchet
run_rjMCMC
## Not run:
library(espresso)
# Import the example data, excluding species with sample sizes < 5
# and considering the sonar covariate
mydat <- read_data(file = NULL, min.N = 5, covariates = "sonar")
summary(mydat)
# Configure the sampler
mydat.config <- configure_rjMCMC(dat = mydat,
model.select = TRUE,
covariate.select = FALSE,
proposal.mh = list(t.ij = 10, mu.i = 10,
mu = 7, phi = 10, sigma = 10),
proposal.rj = list(dd = 20, cov = 7),
prior.covariates = c(0, 30),
n.rep = 100)
summary(mydat.config)
# Run the reversible jump MCMC
rj <- run_rjMCMC(dat = mydat.config,
n.chains = 2,
n.burn = 100,
n.iter = 100,
do.update = FALSE)
rj.update <- update_rjMCMC(rjdat = rj, n.iter = 500)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.