plot.rjtrace | R Documentation |
Generate trace, density, and autocorrelation plots from an rjtrace
object.
## S3 method for class 'rjtrace'
plot(
rj.obj,
param.name = NULL,
phase = NULL,
type = "both",
adjust = 2,
gvals = NULL,
priors = NULL,
covariates.incl = FALSE,
autocorr = FALSE,
individual = TRUE
)
rj.obj |
rjMCMC trace object of class |
param.name |
Parameter name(s). Defaults to |
phase |
Integer. If used, will only generate plots for the parameters of the monophasic (1) or biphasic (2) model. |
covariates.incl |
Logical. If |
autocorr |
Logical. Whether to output chain autocorrelation plots. |
individual |
Logical. If |
Adapted from Casey Youngflesh's function MCMCtrace
.
Phil J. Bouchet
run_rjMCMC
trace_rjMCMC
## Not run:
library(espresso)
# Import the example data, excluding species with sample sizes < 5
# and considering the sonar covariate
mydat <- read_data(file = NULL, min.N = 5, covariates = "sonar")
summary(mydat)
# Configure the sampler
mydat.config <- configure_rjMCMC(dat = mydat,
model.select = TRUE,
covariate.select = FALSE,
function.select = FALSE,
n.rep = 100)
summary(mydat.config)
# Run the reversible jump MCMC
rj <- run_rjMCMC(dat = mydat.config,
n.chains = 2,
n.burn = 100,
n.iter = 100,
do.update = FALSE)
# Burn and thin
rj.trace <- trace_rjMCMC(rj.dat = rj)
# Get density and trace plots
plot(rj.trace)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.