run_rjMCMC | R Documentation |
Run the rjMCMC algorithm on dose-response data.
run_rjMCMC(dat, n.chains = 3, n.burn = 1000, n.iter = 1000, do.update = FALSE)
dat |
A configured rjMCMC object of class |
n.chains |
Number of MCMC chains. |
n.burn |
Number of MCMC iterations to use as burn-in. |
n.iter |
Number of posterior samples. |
do.update |
Logical. If |
A list object of class rjmcmc
.
A progress bar is used to monitor code execution on Mac and Linux operating systems. This feature does not currently work on Windows.
Phil J. Bouchet
configure_RJMCMC
plot.rjtrace
update_rjMCMC
## Not run:
library(espresso)
# Import the example data, excluding species with sample sizes < 5
# and considering the sonar covariate
mydat <- read_data(file = NULL, min.N = 5, covariates = "sonar")
summary(mydat)
# Configure the sampler
mydat.config <- configure_rjMCMC(dat = mydat,
model.select = TRUE,
covariate.select = FALSE,
function.select = FALSE,
n.rep = 100)
summary(mydat.config)
# Run the reversible jump MCMC
rj <- run_rjMCMC(dat = mydat.config,
n.chains = 2,
n.burn = 100,
n.iter = 100,
do.update = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.