# --- Load libraries
library(R2BGLiMS)
data("JAMMR_Example")
# APOSTOLOS SHORT DESCRIPTION OF LOADED DATA
########################################################################
### --- Run JAM-MR with a single value of w and independent data --- ###
########################################################################
# Implement the algorithm.
jammr.results1 <- JAMMR(bx.sim, sx.sim, by.sim, sy.sim, N1 = 5000, eafs = rep(0.3, 50),
trait.var = 5, iter = 1e6, w = 5000, jam.seed = 22)
# Diagnostics.
jammr.results1$causal ## Approximately 0.5 which is the correct value.
jammr.results1$se
jammr.results1$se.adj
jammr.results1$snp.probs ## Probabilities of inclusion per SNP.
jammr.results1$snp.probs[which.pl == 0] ## Probabilities for valid SNPs.
jammr.results1$snp.probs[which.pl == 1] ## Probabilities for pleiotropic SNPs.
jammr.results1$model.matrix ## The top models visited by JAMMR.
# Plotting.
JAMMR_ManhattanPlot(jammr.results1)
JAMMR_SensitivityPlot(jammr.results1)
# Run without the trait variance.
jammr.results1.1 <- JAMMR(bx.sim, sx.sim, by.sim, sy.sim, N1 = 5000, eafs = rep(0.3, 50),
iter = 1e6, w = 5000, jam.seed = 22)
# Different results because trait variance estimate here was completely arbitrary.
#########################################################################
### --- Run JAM-MR with a single w and dependent genetic variants --- ###
#########################################################################
# Simulate a reference genetic matrix for correlated-SNP analysis.
G.sim <- matrix(rbinom(500000, 2, 0.3), 10000, 50)
# This is just for testing purposes. The genetic matrix is based
# on an independence assumption so the results should be very
# similar to those obtained previously.
# Run the algorithm.
jammr.results2 <- JAMMR(bx.sim, sx.sim, by.sim, sy.sim, N1 = 5000, G.matrix = G.sim,
trait.var = 5, iter = 1e6, w = 5000, jam.seed = 23)
# Diagnostics.
jammr.results2$causal
jammr.results2$se
jammr.results2$snp.probs
# Plotting.
JAMMR_ManhattanPlot(jammr.results2)
JAMMR_SensitivityPlot(jammr.results2)
#########################################################################
### --- Run JAM-MR with multiple values of w and independent data --- ###
#########################################################################
# Implement the algorithm.
jammr.results3 <- JAMMR(bx.sim, sx.sim, by.sim, sy.sim, N1 = 5000, eafs = rep(0.3, 50),
trait.var = 5, iter = 1e6, jam.seed = 24,
w = c(0, 500, 1000, 2000, 5000, 10000, 20000, 50000))
# Diagnostics.
jammr.results3$causal
jammr.results3$se
jammr.results3$se.adj
jammr.results3$snp.probs
jammr.results3$w
jammr.results3$all.causal
jammr.results3$all.se
jammr.results3$all.w
jammr.results3$all.probs
# Plotting.
JAMMR_ManhattanPlot(jammr.results3)
JAMMR_ManhattanPlot(jammr.results3, only.best = TRUE)
JAMMR_SensitivityPlot(jammr.results3, adjust.se = TRUE, show.n.snps = TRUE)
########################################################################
### --- Run JAM-MR with multiple values of w and correlated data --- ###
########################################################################
# Implement the algorithm.
jammr.results4 <- JAMMR(bx.sim, sx.sim, by.sim, sy.sim, N1 = 5000, G.matrix = G.sim,
trait.var = 5, iter = 1e6, jam.seed = 24,
w = c(0, 500, 1000, 2000, 5000, 10000, 20000, 50000))
# Diagnostics.
jammr.results4$causal
jammr.results4$se
jammr.results4$se.adj
jammr.results4$snp.probs
jammr.results4$w
jammr.results4$all.causal
jammr.results4$all.se
jammr.results4$all.w
jammr.results4$all.probs
# Plotting.
JAMMR_ManhattanPlot(jammr.results4)
JAMMR_ManhattanPlot(jammr.results4, only.best = TRUE)
JAMMR_SensitivityPlot(jammr.results4, adjust.se = TRUE, show.n.snps = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.