kmeansDesign | R Documentation |
This function performs k-means clustering on
recoup
generated profile matrices and
stores the result as a factor in the design element.
If no design is present, then one is created from the
k-means result.
kmeansDesign(input, design = NULL, kmParams)
input |
a list object created from
|
design |
See the respective argument in
|
kmParams |
Contains parameters for k-means
clustering on profiles. See the respective argument
in |
The design data frame, either created from scratch or augmented by k-means clustering.
Panagiotis Moulos
# Load some data
data("recoup_test_data",package="recoup")
# Calculate coverages
test.tss <- recoup(
test.input,
design=NULL,
region="tss",
type="chipseq",
genome=test.genome,
flank=c(1000,1000),
selector=NULL,
plotParams=list(plot=FALSE,profile=TRUE,
heatmap=TRUE,device="x11"),
rc=0.1
)
# Re-design based on k-means
kmParams=list(k=2,nstart=20,algorithm="MacQueen",iterMax=20,
reference=NULL)
design <- kmeansDesign(test.tss$data,kmParams=kmParams)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.