Description Usage Arguments Details Examples
This function is a private function that returns the basic statistics of a selected model. It is only used in conjunction with boundary or independent sampling method.
| 1 | 
| y | response variables. | 
| fit | basic statistics after fitting a linear mixed model by class  | 
| cov | a covariance matrix of the parameters. System will use default covariance matrix if it is not specified. | 
It is recommended to use ML estimation instead of REML estimation for fixed-effect parameters. It can be specified by argument method="ML".
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | ## Not run: 
#############################################################
################-----IndependentSampling-----################
#############################################################
library(MASS)
library(nlme)
y <- Oxide$Thickness
fit <- lme(Thickness~Wafer,data=Oxide,random=~1|Source,method="ML")
########################################################
out_i <- independent("Mlmmf",y,fit,B=1000)
########################################################
out_i$diag    # out_i$diag is equivalent to out_i$diagnosis
out_i$ind[100:140,]    # out_i$ind is equivalent to out_i$independent.sample
out_i$num    #out_i$num is equivalent to out_i$numWald.interval
out_i$sim    #out_i$sim is equivalent to out_i$simWald.interval
########################################################
par(mfrow=c(2,2))
plot(out_i$ind[,7]~out_i$ind[,6],xlab=expression(beta[1]),ylab=expression(beta[2]),cex=0.5)
points(out_i$MLE[2],out_i$MLE[3],pch=16,col="red",cex=1.5)
plot(out_i$ind[,7]~out_i$ind[,5],xlab=expression(beta[0]),ylab=expression(beta[2]),cex=0.5)
points(out_i$MLE[1],out_i$MLE[3],pch=16,col="red",cex=1.5)
plot(out_i$ind[,6]~out_i$ind[,5],xlab=expression(beta[0]),ylab=expression(beta[1]),cex=0.5)
points(out_i$MLE[1],out_i$MLE[2],pch=16,col="red",cex=1.5)
##########################################################
################-----BoundarySampling-----################
##########################################################
library(MASS)
library(nlme)
y <- Oxide$Thickness
fit <- lme(Thickness~Wafer,data=Oxide,random=~1|Source,method="ML")
target <- "level"
targetvalue <- c(0.5,0.9)
########################################################
out_b <- boundary("Mlmmf",y,fit,target,targetvalue,B=1000)
########################################################
out_b$diag    # out_b$diag is equivalent to out_b$diagnosis
out_b$bound[1:20,]    # out_b$bound is equivalent to out_b$boundary.sample
out_b$num    # out_b$num is equivalent to out_b$numWald.interval
out_b$sim    # out_b$sim is equivalent to out_b$simWald.interval
out_b$convnum   # out_b$convnum is equivalent to out_b$convnumWald
out_b$convsim   # out_b$convsim is equivalent to out_b$convsimWald
########################################################
par(mfrow=c(2,2))
plot(out_b$bound[,7]~out_b$bound[,6],xlab=expression(beta[1]),ylab=expression(beta[2]),cex=0.5)
points(out_b$MLE[2],out_b$MLE[3],pch=16,col="red",cex=1.5)
plot(out_b$bound[,7]~out_b$bound[,5],xlab=expression(beta[0]),ylab=expression(beta[2]),cex=0.5)
points(out_b$MLE[1],out_b$MLE[3],pch=16,col="red",cex=1.5)
plot(out_b$bound[,6]~out_b$bound[,5],xlab=expression(beta[0]),ylab=expression(beta[1]),cex=0.5)
points(out_b$MLE[1],out_b$MLE[2],pch=16,col="red",cex=1.5)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.